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In the first lecture, we developed two models of location choice. The first was based
on households that were the same. Elaborating this model has given us the monocentric
city model and the generalizations that we have studied so far, including the Roback
model. The second model we considered in the introduction was based on agents who
had heterogenous preferences. With the notion of bid-rent function, we can extend the
monocentric city to allow for a small number of classes of agents, as in LeRoy and
Sonstelie (1983) or Fujita and Ogawa (1982). However, to really think about people being
different from one another, we will want a different modeling framework.

We develop such a framework here. We start with a description of two extreme value
distributions, Frechet and Gumbel, and their very useful properties. Next we develop
a version of the linear city model based on discrete space and a population of agents
whose preferences depend on individual draws from a Frechet distribution. Finally, we
discuss a much more general version of this model developed in Heblich et al. (2018).

At heart, these exercises are an elaboration of older techniques for modeling discrete
choice problems by imposing extra adding up constraints, e.g., land and labor markets
clear, on top of the discrete choice machinery. Given this, it is worth noting two classic
books on the discrete choice problem, Anderson et al. (1992) and Train (2009).

A Extreme value distributions and discrete choice problems

a The Frechet distribution

Spatial models with heterogenous agents almost always rely heavily on one of two
extreme value distributions to describe agent heterogeneity.

The first of these is the Frechet distribution,

Pr(z0  z) ⌘ F (z) = e
�Tz

�✏
,T > 0, ✏ > 1

f(z) = T ✏z
�✏�1

e
�Tz

�✏
.

This distribution is governed by two parameters, T , called the level, and ✏ called disper-
sion. These names are suggestive of ‘mean’ and ‘variance’ and are often used in the same
spirit. In fact, the mean of z is

E(z) = �

✓
✏� 1
✏

◆
T

1/✏.

The gamma function in this expression is defined as � (n) =
R •

0 x
n�1

e
�x

dx and is a
generalization of the factorial operator to the real numbers. In particular, � (n) = (n� 1)!
for n an integer.

1Copyright 2020, Matthew Turner. I am grateful to Lorenzo Aldeco, Jonathan Dingel, Gilles Duranton
and Jacques Thisse for helpful comments on earlier versions of these notes.
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Figure 1: C.D.F.’s of Frechet distribution
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Figure 1 illustrates the CDF of a Frechet distribution for various values of T and ✏.
Note the that probability becomes more concentrated, and outcomes less dispersed, as ✏

decreases. While the mean of F depends on ✏ and the variance on T . With that said, the
CDF of F gets flatter as ✏ shrinks and it shifts to the right as T increases, so as a rough
way of thinking about the Frechet, thinking of level as mean and dispersion as variance
may often be defensible.

The Frechet distribution has the following handy property. Consider two Frechet
distributions,

F1(z) = e
�T1z

�✏

F2(z) = e
�T2z

�✏
.

Suppose the two distributions are independent and that we take a draw from each, z1 and
z2. To motivate our discussion, note that in a spatial model, we expect agents to choose
their favorite location from among the available possibilities. If z1 and z2 are related to
an agent’s preferences over two locations, then we will be interested in Pr(z1 < z2).

To evaluate this probability, we must integrate the joint p.d.f. over the region indicated
in figure 2. The region where z1 < z2 is shaded light gray. Assuming z1 and z2
independent, this integral is

Pr(z1 < z2) =
Z •

0
F1(z)dF2(z)dz
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Figure 2: Pr(z1 < z2)
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Given this result, suppose we observe the share of draws, ⇡1, with z1 > z2, and the
share of draws, ⇡2, with z2 > z1. Then in a large sample,

⇡1 =
T1

T1 + T2

⇡2 =
T2

T1 + T2
.

This is a system of two equations in two unknowns, but by inspection, we can identify
T1 and T2 only up to a constant. Given any pair of T ’s that solves this equation, so does
any non-zero scalar multiple. That is, given extreme value draws, I can estimate the level
parameters (up to a constant) if all I observe is the share of draws for which outcome 1 is
larger than 2, and conversely. Indeed, in this simple example, ⇡1 = 1� ⇡2, so it is enough
to observe just one of the two shares. Note that the indeterminacy here is fundamental
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to discrete choice analysis in which we are just concerned with ranking choices (Train,
2009), and not with cardinal comparisons between them.

This result is central to discrete choice analysis. In absence of an easy closed form
solution to the integral that lets us evaluate the likelihood of the first order statistic, we
are left with numerical integration. This rapidly becomes intractable as the number of
possible alternatives increases. To convince yourself of the simplicity and elegance of
this result, try to conduct the corresponding calculation when, for example, z1 and z2 are
uniformly distributed.

In fact, when we discuss models with transportation or transactions costs, we will not
simply be concerned with ranking choices, but with determining whether preferences for
one alternative are sufficiently strong to overcome transaction costs. This will sometimes
allow us to resolve this problem.

Note that ✏ does not appear in this equation, and so we cannot hope to estimate it
from this system alone. This will turn out to be important and we will return to it later.

This result generalizes to a choice over n draws in the natural way. Given n draws
{z1,...,zn}, where zi is distributed Frechet with Fi(z) = e

�Tiz
�✓ , then the probability that

zi = max{z1,...,zn} is ⇡i =
Ti

Ân
j=1 Tj

. Note that we require that the dispersion parameter be
constant across all i, although level parameters can vary.

A large literature is organized around this machinery. Many economic decisions can be
framed as ‘choose your favorite’ from among a discrete choice of alternatives. Examples
include the choice be amongst places to live or countries to trade with. The trick is to
frame such a ‘choose your favorite’ problem in such a way that we can trace the share of
agents choosing each outcome back to the parameters of a joint Frechet distribution.

b CES demand systems and the Frechet distribution

It is worth pointing out the similarity between the expressions for ⇡i above to a demand
function under constant elasticity of substitution preferences. Here, letting xi be the de-
mand for good i 2 [01,] and pi be the corresponding price, under common assumptions,
we can write the demand for good xi as p

��
iR 1

0 p
1��
j dj

, where � is the elasticity of substitution.

Note how close is this functional form to the function describing a the shares given above.
In particular, if we let Ti = ⇢

1�� then

p
��

iR 1
0 p

1��

j
dj

= T

�1
1��
i

TiR 1
0 Tjdj

= T

�1
1��
i

⇡i.

where I’ve cheated a little bit and assumed that the continuum version of the model
leads to the same expression as in the discrete version, with the summation replaced by
an integral. It is common to exploit this similarity in the derivation of models to predict,
for example, trade shares, e.g. Eaton and Kortum (2002).

c The other extreme value distribution

Over the past few years the study of urban economics has seen the application of models
and techniques originally developed to study international trade. Almost all of this work
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relies on the Frechet distribution to describe the heterogeneity of locations or economic
agents.

An older urban economics literature, and more recently Diamond (2016), develops
models based on much the same intuition but uses the Gumbel distribution,

Pr(z0  z) ⌘ F (z) = e
�e

�z
. (1)

Like the Frechet distribution, the Conditional Logit leads to a particularly simple expres-
sion for the share of trials for which a particular draw is the largest of a set of draws.

Given a set of n scalars {u1,...,un} and n draws from a Gumbel distribution, {z1,...,zn},
define vi = ui + zi. In this case,

Pr(vi = max{v1,...,vn}) =
exp(ui)

Ân

j=1 exp(uj)
. (2)

While the formulation of the Gumbel distribution above is pervasive in discrete choice
estimation, it is helpful to consider the slightly larger family of densities given by

Pr(z0  z) ⌘ F (z) = e
�e

�z/µ
. (3)

Here, the parameter µ plays much the same role as does the dispersion parameter ✏ in
the Frechet. The literature on discrete choice commonly normalizes this parameter to
1. Given this literature’s focus on ordinal rankings, this is without loss of generality.
However, by considering the more general function we can illustrate the relationship
between Frechet and Gumbel densities.

To see this, consider a set of n scalars {u1,...,un} and n draws from a Gumbel distribu-
tion of the form given in (3), {z1,...,zn}, and define vi = ui + zi. In this case,

Pr(vi = max{v1,...,vn}) =
exp(ui/µ)

Ân

j=1 exp(uj/µ)
. (4)

If we make the change of variable wi = ln vi, we have

Pr(vi = max{v1,...,vn}) =
w

1/µ
i

Ân

j=1 w
1/µ
j

. (5)

This is exactly the expression we get if we start with a Frechet distributed shock. As a
practical matter it does not appear to be very important which density we work with.
Conventionally, however, trade economists work with the Frechet and everyone else uses
Gumbel.

The reliance on extreme value distributions to model individuals’ choices is not quite
as arbitrary as it seems. There are ‘extreme value theorems’ that parallel the ‘central limit
theorem’. Loosely, if x is a random variable that is a maximum over a many draws of
some other random variable y, then we expect x to have a Frechet or Gumbel distribution,
or a similar third distribution, depending on the characteristics of the distribution on y.
See Embrechts et al. (2013) for examples.
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d A surprising and useful property of extreme value distributions

Consider xi distributed Frechet, so

Fi(x) = e
�Tix

�✓
(6)

fi(x) = Ti✓x
�✓�1

e
�Tix

�✓
(7)

E(x) = � (1 � 1
✓
)T 1/✓

i
(8)

We really care about the properties of the maximum of a set of Frechet draws. To
make things easy, just think about pairs of draws. Define

x
⇤ = max{x1,x2}, (9)

for xi independent Frechet draws as above.
In this case,

Pr(x1 > x2) =
T1

T1 + T2
, (10)

and we can calculate the distribution of x⇤, F (x⇤) as follows:

F (x) ⌘ Pr(x⇤ < x) (11)

= Pr(x1 < x
⇤\

x2 < x
⇤) (12)

= Pr(x1 < x)Pr(x2 < x) (13)
= F1(x)F2(x) (14)

= e
�T1x

�✓
e
�T2x

�✓
(15)

= e
�(T1+T2)x�✓

(16)

Therefore F is also Frechet. Hence

f(x) = (T1 + T2)✓x
�✓�1

e
�(T1+T2)x�✓

(17)

E(x⇤) = � (1 � 1
✓
)(T1 + T2)

1/✓ (18)

We are also interested in E(x⇤|x1 > x2). Evaluating this one is a little trickier. We want
to calculate an expectation over the region in quadrant I of the (x1,x2) plane that lies to
the right of the x1 = x2 line. The probability of each x1 is f1, the weight we assign to it is
F2(x1). Since the probability mass of the whole region is less than one, we need to scale
everything up by the inverse probability of x1 > x2.

Thus we have,

E(x⇤|x1 > x2) = Pr(x1 > x2)
�1
Z •

0
f1(x1)F2(x1)x1dx1 (19)

=
T1 + T2

T1

Z •

0

⇣
T1✓x

�✓�1
1 e

�T1x
�✓
1

⌘
e
�T2x

�✓
1 x1dx1 (20)

=
Z •

0
(T1 + T2)✓x

�✓�1
1 e

�(T1+T2)x
�✓
1 x1dx1 (21)

=
Z •

0
f⇤(x1)x1dx1 (22)

= E(x⇤) (23)

Thus we have three interesting facts:
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1. The expected realization of the maximum of Frechet draws conditional on any
particular realization being the best is the same as the unconditional expected
realization.

2. The expected realization of the maximum of Frechet draws conditional on any
particular realization being the best does not vary with the winner.

3. This one is a little more subtle. Looking at equations (14) and (15), we see that
the argument for #2 above works iff the probabilities of each variable being the
winner takes the familiar Frechet formula. Thus, ‘all expected utilities conditional
on a realized choice are equal’ is equivalent to ‘choice probabilities take the familiar
Frechet form’. That is, we have two equivalent ways of implementing the random
utility choice problem.

B The linear city with discrete space and heterogenous preferences

a Frechet preference shocks

Consider a discrete version of a linear city consisting of three neighborhoods. Index
neighborhoods by i 2 {1,2,3}. Let xi denote a neighborhood’s distance from the CBD,
with xi = i. That is, the three neighborhoods are, respectively, 1, 2, and 3 units of distance
from the center. Suppose that the cost to commute one unit distance is ⌧ .

The city is populated by measure L of agents indexed by j. Each agent chooses a
neighborhood, pays land rent specific to that neighborhood, Ri and commutes to the
center to earn wage w.

The utility of agent j locating at i is

uij = [w�Ri � i⌧ ]zij , (24)

where zij is a person and location specific taste shock, drawn from a Frechet distribution,
F (z) = e

�Tz
�✏ . That is, each agent gets one Frechet shock for each of the three possible

locations.
If we solve (24) for z and substitute into the distribution of z, we derive the implied

distribution of u, G(u) = e
T [w�Ri�i⌧ ]✏u�✏ .

Define an equilibrium to occur when each agent chooses his favorite location, and
require that all landlords in each location choose the same rent.

To begin, let ⇡i denote the share of population living at location i. If all agents choose
their favorite location, then the probability that any particular agent chooses location 1 is
Pr(u1 > u2 and u1 > u3).

Using the results developed above, we have that

⇡1 =
[w�R1 � 1⌧ ]✏

Â3
k=1[w�Rk � k⌧ ]✏

(25)

⇡2 =
[w�R2 � 2⌧ ]✏

Â3
k=1[w�Rk � k⌧ ]✏

⇡3 =
[w�R3 � 3⌧ ]✏

Â3
k=1[w�Rk � k⌧ ]✏

.
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Suppose that each location is occupied by exactly one third of the population so that
⇡i = 1/3 for all i, and that land rents are not observed. Since the denominator of each of
the fractions in (30) is the same, it must be that the numerators are also the same. In turn,
this requires that R1 �R2 = ⌧ and R2 �R3 = ⌧ . This is the discrete analog of having the
land rent gradient decrease at the same rate as commute costs increase.

More generally, with ⌧ unknown, (30) is a system of three equations in 5 unknowns, ⌧ ,
✏ and the three Ri. In general, we can solve the system only if we add more information.
By analogy to the linear city model, two natural candidates would be to require that R3 be
equal to an exogenous agricultural land rent and that income net of rent and commuting
reach some threshold value. This ‘calibration’ exercise is a much simpler version of what
is often done in the recent literature that will be the topic of much of the rest of this
section.

What we have done here is, effectively, to solve the analog of the closed city model.
We fixed population and then asked what land rent would rationalize an equilibrium in
which every person consumed the ‘same amount of space’.

There is an important difference between this discrete linear city and a linear city
with a continuum of locations. In the continuous model, all agents are identical and in
equilibrium all obtain the same level of utility. In the discrete case, all agents within a
location have different levels of utility.

This means that calculating welfare in the discrete case is more difficult. We must
calculate both land rent and consumer surplus. This parallels the difference between the
simple model with homogenous and heterogenous agents that we began with.

In fact, we can calculate the expected utility of an agent living in this city. This
expectation is,

E(u) = E
⇣
maxi2{1,2,3}[w�Ri � i⌧ ]✏z

⌘

= � (
✏� 1
✏

)

0

@ Â
i2{1,2,3}

[w�Ri � i⌧ ]✏

1

A
1/✏

.

At this point, it makes sense to think about the nature of the equilibrium we have
described. Since everyone chooses their favorite location, after realizing shocks and
choosing, no one will want to move. This is broadly consistent with the notion of
equilibrium we used in the closed monocentric city model. Comparing with the open
monocentric city model seems more problematic. In this, if population flows into the
city on the basis expected utility, as described above then we should expect that some
unlucky agents will realize bad shocks for everywhere, and even if they choose their best
option from {1,2,3} will regret their decision to migrate to the city and would prefer the
exogenous outside option.

One natural way around this would seem to be to introduce the ‘outside option’ as
another of the choice alternatives, and not as a reservation expected utility level. It
is not clear, however, if introducing such an option, with a fixed utility level, requires
substantive changes in other parts of the model.

In addition, it is worth pointing out the timing of how prices are determined remains
a little vague. Interpreting the model literally, agents are choosing their location on the
basis of prices, here land rent, that cannot be determined until after everyone resolves
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their random choice problem. Thus, it is natural to think about agents as making
decisions on the basis of their expectations of prices, and that their ex post welfare
depends on realized prices. Implicitly, we are relying on a law of large numbers that says
that as the number of agents choosing becomes uncountably large, all ex ante uncertainty
about prices goes away.

Finally, notice that we do not observe ✏, the parameter that governs preference disper-
sion, and so we have no basis to guess at the utility levels of anyone in our city. It is to
the issue of estimating ✏ that we now turn.

b Estimation

Let Si be the sample analog of ⇡i. As described above, our discrete city is populated by
a continuum of people. In this case, we will have Si = ⇡i.

Suppose that, in addition to observing these shares, we also observe enough other
information that the system described by (30) is exactly identified. This will mean that
each of the three equations hold identically.

We will discuss ‘gravity regressions’ at some length below. They are a widely used
approach to learning about the dispersion parameter. To derive the analog of a gravity
regression in the context of this model, take the logarithm of each of the three equations
in (30). Since the denominator is constant across locations, this yields,

lnSi = � ln

 
3

Â
k=1

[w�Rk � k⌧ ]✏
!
+ ✏ ln(w�Ri � i⌧ ) (26)

= A+ ✏ ln(w�Ri � i⌧ ),

for i = 1,2,3.
This looks like a regression, and it is common to estimate a regression of this form.

Such regressions are often called gravity regressions, although we will need to wait to
see a more complicated model to understand the rational for this name.

Suppose that we estimate a regression based on this equation. That is,

lnSi = A+ ✏ ln(w�Ri � i⌧ ) + µi. (27)

This is the same as (26), except that we have introduced a stochastic error term µi and
implicitly, an assumption about the relationship between this error and the regressor, e.g.
cov(µ, ln(w�Ri � i⌧ )) = 0. In this case, we are able to estimate the dispersion parameter
✏.

Notice that if we subsequently use this estimated value of ✏ in the system (26) and
solve this system exactly, then this introduces a logical inconsistency. In particular, the
gravity regression is based on a logarithmic transformation of (26) that is assumed to
hold inexactly, while the rest of the model requires that it hold exactly.

Alternatively, suppose that our data describes the location of a finite number of people,
say ni in each location. In this case, we would expect that sampling error will lead
realized shares in each location, Si = ni/ Âj nj , to differ slightly from expected values ⇡i.
In this case, we can ask which parameter values are most likely to lead to the observed
values of Si. This leads to a maximum likelihood with likelihood function

L = ⇧
3
j=1

 
[w�R1 � j⌧ ]✏

Â3
k=1[w�Rk � k⌧ ]✏

!ni

. (28)
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c Gumbel preference shocks

We can also describe a discrete linear city model under Gumbel shocks to preferences.
Since the formula for calculating ‘choose your favorite’ under Gumbel shocks revolves
around additive shocks (rather than the multiplicative shocks we used for the Frechet
case) this requires a slightly different specification of preferences.

Specifically, preserve all of the notation from the discrete linear city model above, but
change preferences so that we have an additive Gumbel shock rather than a multiplicative
Frechet shock. In this case we have,

uij = [w�Ri � i⌧ ] + zij , (29)

where zij is a person and location specific taste shock, drawn from a Gumbel distribution,
F (z) = e

�e
�z . That is, each agent gets one Gumbel shock for each of the three possible

locations.
As for the Frechet case, let ⇡i denote the share of population living at location i. If

all agents choose their favorite location, then the probability that any particular agent
chooses location 1 is Pr(u1 > u2 and u1 > u3).

Given the Gumbel distribution of the zij we have that,

⇡1 =
e
w�R1�1⌧

Â3
k=1 e

w�Rk�k⌧
(30)

⇡2 =
e
w�R2�1⌧

Â3
k=1 e

w�Rk�k⌧

⇡3 =
e
w�R3�1⌧

Â3
k=1 e

w�Rk�k⌧
.

This formulation of the problem and the corresponding Frechet based formulation are
obviously similar and the discussion of that model applies almost without adjustment.
There does not seem to be a strong reason to prefer one to the other.

C Using a general model with discrete space and agent heterogeneity to study the role
of the London underground in the economic geography of London

Among the most robust comparative statics in the various formulations of the mono-
centric city model is that a city should spread out as transportation costs decrease. We
saw this result in the context of the linear city model, the monocentric city model with
housing, and in the model of commuting mode choice by LeRoy and Sonstelie (1983).
In each of these models, we allow households to choose their location of residence, but
work location is fixed outside the model.

Fujita and Ogawa (1982) generalizes to allow both firms and workers to choose their
location, and to allow workers to choose both their location of work and their location
of residence. In this model we see that if transportation costs are sufficiently high, a
‘fully mixed’ equilibrium may emerge. That is, if commuting costs are sufficiently high,
in equilibrium everyone works where they live and firms and workers are more-or-less
evenly distributed, and no household commutes to work. As the cost of commuting falls,
given agglomeration forces, we expect to see cities with a monocentric structure, firms at
the center and commuting workers arranged around.
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Thus, the available theory presents alternative hypotheses about the effect of reduc-
tions of transportation costs on urban form. Should we see the dispersion predicted by
the moncentric city model, or the centralization of work predicted by Fujita and Ogawa
(1982)?

This question has also been the subject of a recent empirical literature. Baum-Snow
(2007) counts radial segments of the US interstate highway system emanating from old
central cities. That is, highway segments that are well situated to reduce the cost of
travelling away from the center of US cities. He then examines the extent to which the
number of such radial highways can explain the change from 1950 to 1990 in central city
share of metropolitan area population. This was a period when the share of metropolitan
area population declined dramatically, and Baum-Snow’s estimates suggest that almost
the entire decline can be explained by the creation of radial highways. In a more recent
working paper, Baum-Snow (2017) also finds the radial interstate highways decentralized
employment in US, as well as population.

The research design pioneered by Baum-Snow has been replicated in China by Baum-
Snow et al. (2017) and in Europe by Garcia-López et al. (2015). Both studies arrive at
qualitatively similar conclusions about ability of highways to spread cities out. Similarly,
Gonzalez-Navarro and Turner (2018) examine the effect of subways on rate at which night
light decays with distance from a city enter. Consistent with Baum-Snow (2007), they find
that night light is more dispersed in cities with more extensive subway networks, and
that light becomes more dispersed as the extent of a subway network increases.

In short, this empirical literature would seem to strongly support the predictions of
the monocentric city model.

Against this background, the finding in Heblich et al. (2018) is surprising. This paper
conducts two main exercises. The first documents changes in the pattern of residential
and commercial land use in London around the time that its subway began to operate.
They find that London’s geography changed in a way that is broadly consistent with
the predictions in Fujita and Ogawa (1982). That is, the employment and residence
locations became segregated as the center of London became home to an extraordinary
concentration of employment, the rest of the city specialized in housing, and people went
back and forth between central employment and peripheral residences on the trains.

The second main exercise conducted in Heblich et al. (2018) is to develop a model with
which to rationalize the changes in London that appear to follow from the construction
of the rail network. This model is a generalization of the discrete space linear city model
described above, and is the main topic of this section.

Briefly, Heblich et al. (2018) develop a model with discrete locations, heterogenous
freely-mobile households differentiated by Frechet shocks to their preferences, and a
production sector governed by perfect competition and free-entry. There are no ag-
glomeration effects, but agents have preferences over consumption and housing and pay
for commute distance by foregoing a portion of their daily wage. This is, therefore,
an important advance to our ability to think about location choice. In particular, their
model describes household choices of work and residence and the location of production
in a model that can perfectly replicate a cross-section of behavior in London as an
equilibrium.

This is an improvement on the monocentric city model and on Fujita and Ogawa (1982)
in a number of dimensions. It is inferior in two regards. First, unlike Fujita and Ogawa
(1982) it does not consider agglomeration economies. In fact, the technique developed
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in Heblich et al. (2018) derives from and is simpler than Ahlfeldt et al. (2015) which
does allow for agglomeration economies. Second, the complexity of the model is such
that analytic comparative statics are impractical. The entire exercise is largely organized
around a single, numerical comparative static: What would London look like without
the subway?

With that preamble, the details of the model follow. London consists of R discrete
‘boroughs’. Index this set of locations by i if we are referring to work locations and by n

if referring to residence locations. Each borough contains floor space, Ln, with price Qn

if used as housing for households, or Qi if used as an input into production.
Measure H households live in London. Of these, Hn live in borough n and Hi work

in borough i. Index households with !. All households supply one unit of labor
inelastically and have an outside utility level u. Land rent is collected by absentee
landlords.

Households derive utility from the consumption of a composite consumption good,
with price P , and housing according to a Cobb-Douglas utility function with consump-
tion share ↵. Conditional on a choice of work location i, household ! has income w

⇤
i
.

Thus, the indirect utility function for household ! living in n and working in i is

uni =
w
⇤
ni

P↵
nQ

1�↵
n

. (31)

Next, make the simplifying assumption that Pn = 1 for all n. Thus, the composite
consumption good is the numeraire and, implicitly, it trades costlessly across boroughs.

Income w
⇤
i

depends on the wage available in borough i, on commuting costs between
boroughs n and i, and on a random shock,

w
⇤
ni =

zni(!)wi

ni
. (32)

Here, wi is the wage in borough i. ni > 1 is an ‘iceberg’ commute cost. With ni > 1,
fraction 1 � 1/k of the households labor ‘melts’ in the commute: if  units of labor
begin a commute, only 1 unit finishes it. Note that this is different from the additive
formulation of commuting costs we have considered so far. This assumption is purely
to ease computation. It is common to all of the papers in this literature and is inherited
from the trade literature from which this literature is derived, e.g., Eaton and Kortum
(2002).

zni(!) is an individual specific shock reflecting some combination of !’s idiosyncratic
productivity in i and his taste for the commute between n and i. Each ! will draw one
such z for each of the possible pairs of location/residence choices.

Assume that the zni(!) are drawn from a Frechet distribution

Gn(z) = e
�Bnz

�✏
. (33)

Note that the level parameter varies over residence boroughs only. It will operate as
a measure of the ‘residential amenities’ in borough n. The dispersion parameter, ✏ is
common across all residence-workplace pairs.
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Substitute (32) into (31) and solve for z. Next substitute in (33)and recall that Pn = 1,
to derive the Frechet distribution for uni(!),

Gni

✓
niQ

1�↵
n

wi

uni

◆

= exp

"
�Bn

✓
niQ

1�↵
n

wi

uni

◆�✏
#

Let ⇡ni = Hni
H

denote the share of households choosing residence n and workplace i.
Since we consider a continuum of agents, this share will exactly equal the probability of
an agent preferring the workplace residence pair (n,i) to all others. That is,

Pr(uni � un0i0 8n0,i0 2 R). (34)

Recalling the particular properties of the Frechet distribution discussed above, this
means that

⇡ni =
Bnw

✏

i
(niQ1�↵

n )�✏

Âr2R Âs2RBrw
✏
s(rsQ

1�↵
n )�✏

(35)

Summing across residence locations we get the share of workers in borough i,

⇡i =
Hi

H
(36)

= Â
r2R

⇡ri

= Â
r2R

Brw
✏
r(riQ

1�↵
r )�✏

Âr02R Âs2RBr0w
✏
s(r0sQ

1�↵

r0 )�✏

Similarly, summing across workplaces, we get the share of households resident in n,

⇡n =
Hn

H
(37)

= Â
s2R

⇡ns

= Â
s2R

Bnw
✏
s(nsQ

1�↵
n )�✏

Âr2R Âs02RBrw
✏

s0(rs0Q
1�↵
r )�✏

The 2R equations described by (36) and (37) correspond loosely to the three equations
describing population shares in the three location linear city model. Thus, we should
expect them to be important for estimates to calibrate or estimate the model. This turns
out to be the case, and the equations are central to the calibration exercise preformed in
Heblich et al. (2018).

Note that, despite the stochastic foundations of this model, there is no uncertainty in
its predictions. Because we are drawing a from a continuum of households, the fraction
of observed households in each neighborhood will exactly match the expected quantity.
This eases calculation, but will complicate efforts to calibrate the model. If the model does
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not fit exactly, there is not source of structural error to appeal to explain the divergence
between model and observations.

Again using the properties of the Frechet distribution, we can evaluate the expected
utility of a household living in n and working in i,

E(uni) = �

"

Â
r2R

Â
s2R

Brw
✏

s(rsQ
1�↵

n )�✏

# 1
✏

where � = � (✏� 1)/✏. This calculation is analogous to the corresponding calculation
that we performed earlier for the three location linear city, and the same comments about
spatial equilibrium and the price mechanism apply.

It is worth noting that we can also use equation (35) to calculate the share of people
living in n working in i, for each possible workplace i,

⇡ni|n ⌘ Hni

Hn

(38)

=
Hni
H

Hn
H

(39)

=
⇡ni

⇡n
(40)

=
⇡ni

Âs2R ⇡ns
. (41)

Substituting from (35) and simplifying, we arrive at

⇡ni|n =

⇣
wi
ni

⌘✏

Âs2R

⇣
ws
ns

⌘✏ (42)

This is a ‘gravity equation’ for commuting. It provides that most widely used basis for
estimating the dispersion parameter, a topic that we will return to later.

We now turn our attention to the production of the composite good.
Each borough produces the tradable composite consumption good from floor space,

labor, and an intermediate input, ‘services’, produced in the borough, and not traded.
The intermediate input, in turn, is produced from floor space and labor. Both sectors
are constant returns to scale, and both sectors have a borough specific total factor
productivity. Equilibrium behavior is determined by perfect competition and free-entry.

Omitting a good deal of detail, this leads to an equilibrium in which the wage in
borough i is given by

wi = A

1
�̃
i
Q

1��̃
�̃

i
, (43)

where Ai compounds total factor productivity in the intermediate and final goods sector
in borough i, and �̃ compounds parameters from intermediate and final goods produc-
tion functions. As before, Qi is the price of floor space in borough i.

With this abbreviated description of production in place, closing the model requires
only that we specify market clearing conditions. Market clearing requires that two main
accounting identities be satisfied.
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Figure 3: Ricardian trade with trade costs
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The first of these involves balancing the numbers of workers with the number of
residents and commuting patterns. Everyone must live somewhere, work somewhere,
and commuting flows must synchronize these two distributions.

The second involves ensuring that the land market clears. Firms and residents must
pay the same price for floor space, and total payments for floor space by households and
firms must match to total rent received by landlords.

With preferences, production and market clearing conditions specified, it is now
possible to calibrate the model. This process is conceptually similar to what we described
above in the three location discrete analog to the linear city model, albeit considerably
more complicated. This leads to all estimates for all of the exogenous parameters of the
model. This, in turn, permits the evaluation of counterfactual transportation policies,
really numerical comparative statics. In particular, it allows the authors to investigate
what London would look like in the absence of its subway. Not too surprisingly, these
counterfactuals suggest that London’s subway played an important role in determining
the economic geography of the city.

D Ricardian Trade, gravity, and market access

Ricardian Trade As we saw in the first lecture, heterogeneity of agents is important
for understanding the welfare implications of particular patterns of location. More
specifically, for the purpose of welfare, the thing that is really important is how dif-
ferent peoples’ tastes are from one another. This means that understanding preference
dispersion is important.

This same intuition is central to trade. Here, however, it is differences in comparative
advantage rather than differences in taste that drive results. In a formal sense, these are
similar. We can recast the decision to commute to a far away location as a decision to
import labor, and the cost of commuting becomes the cost to transport labor.
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Given the importance of the dispersion of preferences or comparative advantage for
determining the extent to which people avail themselves of far-away goods or jobs, this
section discusses the most common way of learning about such dispersion, the ‘gravity
regression’.

It is easiest to proceed in the context of an example that describes trade in goods. To
begin, consider a world that consists of two locations, i 2 {1,2}. There are a continuum
of goods, c 2 [0,1]. Each location can produce all goods at unit cost pi(c), where each
price is draw from a distribution of prices, F (p). To simplify the problem, both locations
draw from the same price distribution. Thus, each good can be produced in two locations
at different prices.

Suppose each location is inhabited by a single consumer who consumes one unit of
each good inelastically, but tries to minimize expenditure. That is, each consumer buys
the good from the cheapest available source.

We can now consider the patterns of trade that emerge as the cost of trade between
the two locations varies.

If trade between the two locations is infinitely expensive, each consumer buys all
goods locally. If trade between the two locations is free, then each consumer buys each
good from the cheapest source. In this case, good c is produced in location 1 if and only
if p1(c) < p2(c).

Now consider the intermediate case, where trade is possible, but each unit traded
incurs cost a pairwise iceberg trade cost, ⌧ � 1. This means that in order for one unit
of good c produced in location 2 to arrive in location 1, ⌧ units must be shipped from
location 2.

With trade costs, each good will have two prices in each location, one each for the
domestic and foreign varieties. To keep track of this, let pij(c) denote the price in location
i of good c produced in j. With iceberg trade costs, p12 = ⌧p2 and p21 = ⌧p1. Suppose
that no shipping costs are incurred for goods produced and consumed locally, so that
p11 = p1 and p22 = p2.

For each particular good, c, the economy receives two price draws, p1(c) and p2(c). The
consumers in each location buy good c from the cheapest source available to them. This
gives rise to three possible cases. If ⌧p2(c) < p1(c) then p12(c) < p11(c) and it is cheaper
for the consumer in location 1 to buy good c from location 2 (and pay the trade cost) than
to buy the locally produced variety. Trivially, this requires that the consumer in location 2
buy locally produced c rather than import it from location 1. Thus, if ⌧p2(c) < p1(c) then
all good c consumed in locations 1 and 2 is produced in location 2. Figure 3 illustrates
the range of draws for which this outcome obtains as the cone bounded on the left by
the y-axis and on the right by the line p2 = ⌧p1.

If ⌧p2(c) < p1(c) then we get the opposite result. All good c consumed in locations 1
and 2 is produced in location 1. Figure 3 illustrates the range of draws for which this
outcome obtains as the cone bounded on the left by the line p1 = ⌧p2 and below by the
x-axis.

When ⌧ > 1, it is also possible that neither location has a sufficient comparative
advantage in producing c to overcome the resistance of trade costs. This occurs if
⌧p1(c) > p2(c) >

p1(c)
⌧

. In this case, both locations produce good c exclusively for local
consumption. The region of price draws for which this occurs is the central cone in figure
3.
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We are interested to understand the interaction between productivity dispersion, i.e.,
the variance of F , trade costs, and patterns for trade. In particular, we would like to
know whether observations of trade costs and patterns of trade can allow us to learn
anything about productivity dispersion.

Consider first the case where trade costs are zero. In this case, the decision about
where to buy a good is purely ordinal. If a good is cheaper in location i, buy from
i. Because it doesn’t matter how much cheaper, the dispersion of prices also doesn’t
matter.

With trade costs, this is no longer true. In particular, it is natural to suspect that
trade increases as the dispersion of productivity increases. This suggests the possibility
of learning about the dispersion of productivity by examining the way that the share of
traded goods changes with trade costs. This is exactly the logic of ‘gravity regressions’.

It is easy to make this intuition precise when prices follow a Frechet distribution.
Suppose that both p1 and p2 are distributed according to F (p) = e

�Tp
�✏ . With iceberg

trade costs, p12 = ⌧p1. It follows that p12 is distributed Frechet, with G(p) = e
�T ⌧

✏
p
�✏ .

Let ⇡12 denote the fraction of goods consumed in location 1 which are produced in
region 2. Since a good is produced in region 2 and consumed in region 1 if and only if
p12 < p1. Recalling earlier results about the Frechet distribution, this means that

⇡12 =
T

T ⌧ ✏ + T
(44)

=
1

⌧ ✏ + 1

Since ⌧ and ⇡12 are observed, this is one equation in one unknown, we can solve this
expression for ✏. Thus, the introduction of trade costs makes it possible to learn about
the dispersion of prices just from easily observable trade shares and information about
transportation costs.

This is precisely the logic behind the widely gravity regression. By exploiting changes
in patterns of trade in goods or commuting (trade in labor), as trade costs change but the
productivity distribution does not, the gravity regression seeks to identify the dispersion
of location specific productivity.

Notice that in a more complicated geography, to create a centralizing force. Implicit
in the Ricardian set-up, comparative advantage, productivity shocks, are a feature of a
location, not of some mobile factor that happens to be at the location. Moreover, the fact
that the support of the Frechet is unbounded means that every location will always trade
with every other. This is going to create an incentive for people to locate in the ‘center’
of the geography. This is where (usually) you will minimize your average trade cost.

Two comments about this. First, the advantage of a central location is a feature of any
model of trade in which agents trade with everyone. In particular, this is also true for
two for two other common foundations for trade models, ‘Armington’, and ‘monopolistic
competition’. Both frameworks, like the Ricardian set-up, require every location to trade
with every other. Second, the incentive for centralization looks like an ‘agglomeration
economy’, but it’s not really. The centralizing force in trade models is a feature of the
location and does not depend the amount of economic activity in the location. In this
sense, at least in the Ricardian model, the centralizing force is exogenous. Once you pick
your geography and shock, the importance of the centralizing force is determined. This
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is not how agglomeration forces work in conventional urban models. See Thisse et al.
(2021) for more on this.

The Gravity Regression In our discussion of Heblich et al. (2018) we presented the
following gravity equation,

⇡ni|n =

⇣
wi
ni

⌘✏

Âs2R

⇣
ws
ns

⌘✏ (45)

This equation motivates a regression equation whose logic is much the same as in the
simple example above.

However, this gravity equation is different than the simple example of (44). The
gravity equation from Heblich et al. (2018) involves pairwise commutes, trades of labor,
across many different boroughs, not just two locations as in the simple example of (44).
This means that pairwise commuting between i and j depends on the attractiveness of
commuting to k. Thus, the gravity equation that emerges from a model based on Frechet
productivity shocks allows for the possibility that commuting between i and j is limited
not because people in i don’t want to commute to j, but because location k is still more
attractive.

In addition, with the addition of many possible origin and destination pairs, the
easy analytical solution for the dispersion parameter that is possible in the two location
example is no longer possible. Instead, it is common to evaluate the dispersion parameter
using a regression.

To see how this works, first take logarithms of both sides of (45) to get

log(⇡ni|n) = log(
✓

wi

ni

◆✏

) + log( Â
s2R

✓
ws

ns

◆✏

). (46)

Next, note that the second term does not vary within location n, so we can write this
as

log(⇡ni|n) = ✏ log(wi)� ✏ log(ni) +An + µni. (47)

In this regression, An is a location specific constant which reflects the denominator of
(45) and µni is an error term.

Given this formulation of the gravity equation as a regression, we can regress pairwise
commute shares on a location indicator and on location specific wages and recover an
estimate of the dispersion parameter as the wage coefficient. This is the most common
way to estimate the dispersion parameter.

This requires three comments. First, in spite of the elaborate stochastic structure of the
location choice model, there is no way to interpret the error µ as part of an individual or
firm decision. It is a purely ad hoc measurement error term. Second, if we include only
wages as a regressor, then the implied assumption is that the pairwise trade costs is part
of the regression error. This, in turn necessitates an assumption about the orthogonality
of location wages and pairwise commute costs. Third, as discussed in the context of
the discrete linear city model, there is no guarantee that this approach to estimating ✏

will be logically consistent with a subsequent calibration of the model that relies on this
estimate.
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