Notes on Dynamic Owner-Occupied Housing Demand

Holger Sieg University of Pennsylvania

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Owner-Occupied Housing Demand

- Here we sketch the dynamic housing demand model that was developed by Diaz and Luengo-Prato (2010) and estimated by Bajari, Chan, Krueger and Miller (2013). A similar model is used by Hurst, Keys, Seru, and Vavra (2016).
- Let's ignore renters and assume that everybody is an owner.
- We model a typical household's consumption and housing choice as a partial equilibrium, dynamic decision problem with a finite lifetime horizon.
- Households live for T periods, and in each period t they choose consumption expenditures on nondurables, c_t, and the amount of one-period risk-free financial assets (bonds) to bring to the next period, b_{t+1}.

Preferences

- Let h_t denote the size of the household's owned real housing stock brought into the period, so that h_{t+1} is the amount of housing chosen for today.
- Households value nondurable consumption, c_t, and housing, h_{t+1}, according to the period utility function

$$u(c_t, h_{t+1}) = \ln[(\theta \ c_t^{\rho} + (1-\theta)(e^{\kappa_t} \ h_{t+1})^{\rho})^{1/\rho}] \quad (1)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where κ_t is an iid preference shock.

We need the preferences shock to generate changes in housing consumption when income does not change.

Lifetime Utility

Expected lifetime utility is then given by

$$E_0\left[\sum_{t=1}^{T}\beta^{t-1}u(c_t,h_{t+1})+\gamma\beta^{T}(b_{T+1}+p_{T+1}h_{T+1})\right]$$
(2)

where β is the standard time discount factor, T determines the end of working life, and γ measures the degree of altruism to leave bequests.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Expectations are taken with respect to the stochastic processes driving labor income, housing preference shocks, and house prices, which we specify later.

Law of Motion for Prices and Income

- Let p_t denote the relative price of one unit of housing in terms of the numeraire nondurable consumption good.
- Housing prices follow first order stochastic Markov process.
- At time 0, agents are endowed with initial asset holdings (b₀, h₀) and one unit of time per period, which they supply inelastically to the labor market to earn labor income y_t.
- The labor income process is composed of two components, a deterministic mean life-cycle profile ε_t (which incorporates income growth over the life cycle) and a stochastic component η_t that follows a first order Markov process.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Thus labor income is given by $y_t = \epsilon_t \eta_t$.

Adjustment Costs and Taxes

- We model three main frictions in the housing market explicitly.
- First, the stock of housing is subject to non-convex adjustment costs. Specifically, in order to purchase a home of size h_{t+1} the household has to spend p_th_{t+1} plus adjustment costs given

$$p_t \Phi(h_{t+1}, h_t) = \phi \mathbb{1}\{h_{t+1} \neq h_t\} p_t h_{t+1}$$
(3)

Second, the household has to pay property taxes. Assuming a time invariant property tax rate τ, the tax payments in a market value tax system are given by τ p_t h_{t+1}.

Downpayment Requirement

- A third key friction in our model is the requirement for households to acquire and maintain some minimal positive equity share in the house.
- We assume that the joint choice of financial assets and housing positions satisfies the following collateral constraint:

$$b_{t+1} \ge -(1-\xi)p_t h_{t+1}.$$
 (4)

Here ξ is the fraction of the purchase price of the house that has to be paid down at purchase, that is, $(1 - \xi)$ is the fraction of the purchase price that can be financed via a mortgage.

- In most of our experiments we shall assume that households are able to finance at most 80% of their housing purchases through mortgages.
- Also note that as long as ξ < 1, households can only borrow against their housing collateral; uncollateralized debt is therefore ruled out by assumption in our model.</p>

Financial Assets and Budget Constraint

- In addition to housing, households can use financial assets to accumulate wealth. These assets yield a real interest rate r_t.
- ▶ If households borrow (subject to the collateral constraints), they face a real mortgage interest rate $r_m > r$.
- Defining r(b) = r if $b \ge 0$ and $r(b) = r_m$ if b < 0, the budget constraint can be written as

$$c_t + b_{t+1} + (1+\tau) p_t h_{t+1} + \phi \ 1\{h_{t+1} \neq h_t\} p_t h_{t+1} = y_t + (1+r(b_t))b_t + p_t h_t.$$
(5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Non-Negativity Constraints

Finally, consumption and housing choices are constrained to be nonnegative:

$$c_t, \quad h_{t+1} \ge 0. \tag{6}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Households maximize inter-temporal utility (2) subject to the constraints (4), (5), and (6).

Recursive Representation

Following BCKM, the model in recursive formulation can be written as:

$$V(\kappa,\eta,b,h,p,t) = \max_{c,b',h'} \left[u(c,\kappa,h') + \beta E V(\kappa',\eta',b',h',p',t+1) \right]$$

s.t.

$$egin{array}{rcl} c, & h' &\geq & 0 \ & b' &\geq & -(1-\xi)ph' \ c+b'+(1+ au)ph'+\phi \ 1\{h'
eq h\} \ ph' &= & \eta\epsilon_t+(1+r(b)) \ b+ph \end{array}$$

Voluntary Equity

- As pointed out by DL and BCKM, the constraint set for (b', h') is not rectangular, i.e. the constraint on h' depends on b', which is itself a choice variable.
- This problem can be overcome by defining a new variable called voluntary equity, q', as:

$$q' = b' + (1 - \xi) p h'$$
 (7)

- Voluntary equity is the wealth held by the households in excess of the required downpayment requirement at the beginning of the period.
- This definition implies that

$$q = b + (1 - \xi) p_{-1} h$$
 (8)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

where p_{-1} is the price of housing in the previous period, which now becomes an additional state variable.

New Recursive Representation

This transformation of variables gives us the following problem:

$$V(\kappa, \eta, q, h, p_{-1}, p, t)$$
(9)
= $\max_{c,q',h'} \left[u(c, \kappa, h') + \beta E V(\kappa', \eta', q', h', p, p', t+1) \right]$

With this reformulation, the model has two control (wealth) variables h' and q' that are constrained to be non-negative.

$$c \ge 0 h' \ge 0 (10) q' \ge 0 c + q' + \xi ph' + \phi 1\{h' \neq h\} ph' + \tau ph' = \eta \epsilon_t + (1 + r(\cdot)) q + [p - (1 - r(\cdot))(1 - \xi)p_{-1}]h$$

where

$$r(q, h, p_{-1}) = \begin{cases} r & \text{if } q - (1 - \xi)p_{-1}h \ge 0\\ r_m & \text{if } q - (1 - \xi)p_{-1}h < 0 \end{cases}$$

Comments on Solving the Model

- Since we use an adjustment cost that is non-convex, the household decision problem is not a convex programming problem, and numerical approaches that require differentiability of the value function cannot be applied.
- Therefore we use discrete state space dynamic programming techniques to solve the problem. In particular, we discretize the state space for (q, h) into a finite (but not evenly spaced) rectangular grid (the income and house price process is already a finite state Markov chain by assumption) and maximize the objective function by searching for each (q, h) over the finite grid of admissible choices.
- The consumption choice is implied by the budget constraint.

Comments (cont)

- Given a terminal value function (given by the bequest function), we can iterate backward in age of the household t to solve for the age-dependent optimal policy and value functions.
- Once we have computed these, simulated life-cycle patterns of consumption, housing, and financial wealth can be generated for any sequence of house price and income shock realizations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Computation of a single policy function took week on an advanced workstation.

References

- Bajari, P., Chan, P., Krueger, D. and D. Miller (2013). A dynamic Model of Housing Demand: Estimation and Policy Implications. International Economic Review, 54 (2). 409 -442.
- Diaz, A. and M. Luengo-Prado (2010). The Wealth Distribution with Durable Goods. International Economic Review, 51 (1), 143-170.
- Hurst, Erik, Benjamin J. Keys, Amit Seru, and Joseph Vavra. 2016. "Regional Redistribution through the US Mortgage Market." American Economic Review, 106 (10): 2982-3028.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・