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1The discussion of the dynamic logit model largely follows Rust (1994) as
well as lecture notes that John Rust shared with me.



Steps in a Dynamic Structural Model

The typical steps in a dynamic structural econometric model:

1. Specify the primitives of the model,
▶ Single period agents’ payoff functions (utility or profit)
▶ Evolution of state variables (e.g. capital)

2. Solve for optimal dynamic behavior
▶ We typically assume that agents maximize the present

discounted value of future utilities or profits

3. Search for parameter values that result in the “best match”
between our model predictions and observed behavior



State and Control Variables

▶ Two types of variables
▶ st state variables
▶ dt control variables

▶ The set of all possible choices is D. The action space is
assumed to have a finite number of elements.

▶ Choices are constrained. The constraints depend on the state
of the world. The set of feasible choices at st is denoted by

Dt(st) ⊆ D

▶ Example: budget constraint, law of motion for the capital
stock, etc.



Example: Rust’s Optimal Bus Replacement

▶ Rust (1987) estimated an optimal replacement model.

▶ The choices are to replace or not to replace an engine:

d1,t =

{
1 no replacement

0 replacement

▶ State variables:
▶ miles of the engine xt ;
▶ εt = (ε1,t , ε2,t), which are idiosyncratic shocks.



Preferences & Beliefs

▶ Period utility function is given by:

u(st , dt , θ)

▶ θ is a vector of parameters to be estimated. Note that we
often suppress θ to simplify the notation.

▶ Agents maximize expected intertemporal utility with discount
factor β.

▶ Beliefs over future states are given by Markov transition
probabilities:

π(st+1|st , dt , θ)



Bus Replacement Example

▶ Choice specific utility is given by:

u1,t = −C (xt , θ) + ε1,t

u2,t = −C (0, θ)− rc + ε2,t

where operating costs are given by C (xt) = θ0 + θ1xt , and
replacement costs are rc .

▶ P[xt+1|xt , dt , θ] =

{
θ2e

−θ2(xt+1−xt) d1,t = 1

θ2e
−θ2xt+1 d2,t = 1

▶ (ε1,t , ε2,t) ∼Type I extreme value



Optimal Decision Rules

Individuals choose an optimal decision rule δt(st , θ) such that

dt = δt(st , θ)

maximizes expected lifetime utility given by

Vt(st) = max
δ

{
E

[
T∑

τ=t

βτ−tu(sτ , dτ , θ)

∣∣∣∣st = s

]}

subject to the feasible constraints. Vt(s) is the value function
associated with the dynamic discrete choice problem.



Bellman Equation

We can also express the individuals optimization problem
recursively using Bellman’s equation:

Vt(s) = max
d∈Dt(s)

{
u(s, d) + β

∫
Vt+1(s

′)π(s ′|s, d , θ)ds ′
}

(1)

In many applications, we will discretize the state space, i.e. we will
assume that the support of s has a finite number of elements. Let
S the number of possible states. In that case, we have:

Vt(s) = max
d∈Dt(s)

{
u(s, d) + β

S∑
s′=1

Vt+1(s
′) π(s ′|s, d , θ)

}



Solving DP Problems with a Finite State Space

We can use a technique called value function iteration. In the
finite horizon case (T < ∞), this is equivalent by solving the
model backward:

VT (s) = max
d∈DT (s)

u(s, d)

Vt(s) = max
d∈Dt(s)

{
u(s, d) + β

∑
s′

Vt+1(s
′)π(s ′|s, d)

}

Finite time horizon problems are non-stationary, i.e. the value
function and the policy function depend on time, t.



The Stationary Infinite Horizon Case

In the stationary infinite horizon case, we have

Vt(st) = V (st) for all t

To compute V (st), we start with an initial guess of the value
function, denoted by V (s). We then iterate and update the value
function:

V ′(s) = max
d∈Dt(s)

{
u(s, d) + β

∑
s′

V (s ′)π(s ′|s, d)

}

until convergence:

∥V (s)− V ′(s)∥ ≤ c for all s

for some convergence level c. Recall that this algorithm converges
quickly since the algorithm is a contraction mapping. The
algorithm computes a fixed point of the contraction mapping.



Policy Function Iteration

▶ Instead of iterating on the value function, we could also
iterate on the policy function.

▶ Pick a policy function δ(s). The value function that is
induced by this policy function is given by:

Vδ(s) = u
(
s, δ(s)

)
+ β

∑
s′

Vδ(s
′)π
(
s ′|s, δ(s)

)
or in matrix algebra

Vδ︸︷︷︸
[S×1]

= u︸︷︷︸
[S×1]

+ β Eδ︸︷︷︸
[S×S]

Vδ︸︷︷︸
[S×1]



Hence we get
(I − βEδ)Vδ = u

This is a linear system of equations which can be solved to obtain:

Vδ = (I − βEδ)
−1u

Now we can update the policy function:

δ′(s) = argmaxd∈D(s)

{
u(s, d) + β

∑
s′

Vδ(s
′)π(s ′|s, d)

}

And iterate on this until convergence:∥∥δ(s)− δ′(s)
∥∥ ≤ c



Observed and Unobserved State Variables

▶ If the goal of the analysis is to estimate the parameters of the
model, we need to impose additional assumptions.

▶ We partition the state space into two components:
▶ x observed by the econometrician
▶ ε unobserved by the econometrician

▶ Note that we still assume that s = (x , ε) is observed by the
individual.



Deterministic Decision Rules

▶ Optimal decision rules of DP models are deterministic. (See
Rust (1994) for a discussion.)

▶ We, therefore, need unobserved state variables to obtain a
well-behaved econometric model.

▶ Let us rewrite the decision rule as

δ(s, θ) = δ(x , ε, θ)

▶ The idea is to obtain conditional choice probabilities by
integrating out the state variables that are not observed by
the econometrician.

▶ This is the same idea that McFadden (1974) used for static
discrete choice models.



Conditional Independence

▶ To estimate the transition probabilities, it is useful to assume
that:

π(xt+1, εt+1|xt , εt , dt , θ) = q(εt+1|xt+1) f (xt+1|xt , dt , θ)

▶ xt+1 is a sufficient statistic for εt+1

▶ In practice, we often assume:

q(εt+1|xt+1) = q(εt+1)

▶ f (xt+1|xt , dt , θ) does not depend on εt .



Additive Separability

Furthermore, we assume that the utility function is additively
separable in εt :

u(st , dt , θ) = u(xt , dt , θ) + εt(dt)

=
∑
i

di ,t (ui (xt , θ) + εi ,t)

This assumption makes it easier to integrate out the error terms.



Conditional Value Function

Under these assumptions, the Bellman equation takes the form:

V (x , ε) = max
d∈D(x)

{v(x , d) + ε(d)} ,

where v(x , d) is called the conditional value function, which is
given by:

v(x , d) = u(x , d)+β

∫ [∫
V (x ′, ε′)q(ε′|x ′)dε′

]
f (x ′|x , d)dx ′ (2)

In some papers vj(xt) is used to denote the conditional value
function:

Vt(x , ε) = max


J∑

j=1

djt (vjt(x) + εjt)





Conditional Choice Probabilities

By integrating out the unobserved state variables, we obtain
well-behaved conditional choice probabilities:

P[d |x , θ] =

∫
1 [d = δ(x , ε, θ)] q(ε|x) dε

=

∫
1 [d = argmax {v(x , d) + ε(d)}] q(ε|x) dε(3)

Note that the ε’s need to be continuous with unbounded support
for the choice probabilities to be well-defined.



The Likelihood Function

Given a random sample {x it , d i
t}N T

i=1,t=1, the likelihood function is
given by:

L(θ) =
N∏
i=1

T∏
t=1

Pt(d
i
t |x it , θ) f (x it+1|x it , d i

t , θ)

The likelihood function has two components:
a) the conditional choice probabilities
b) the transition probabilities



A Nested Fixed Point Algorithm

Estimation consists of:

▶ an outer loop that searches over the parameter space;

▶ an inner loop that evaluates the conditional value functions of
each parameter vector.



Unobserved Types

▶ It is often useful to control for unobserved heterogeneity
among agents.

▶ Following Heckman and Singer (1984), define m = 1, . . . ,M
different types and assume that preferences and beliefs are
type-specific.

▶ Assuming that each type occurs with probability qm, we have

L(θ) =
N∏
i=1

M∑
m=1

(
qm

T∏
t=1

Pm
t (d i

t |x it , θ)f mt (x it+1, x
i
t , d

i
t , θ)

)

▶ Arcidiacono and Jones (2003) discuss how to use an EM
algorithm to sequentially estimate this model.



Example: Keane & Wolpin

Let us assume that errors are normally distributed.

1. Pick parameters vector.

2. Solve equation (1) given by V (s) = Γ
(
V (s)

)
using value

function iteration for the finite time horizon.

3. Compute v(x , d) using (2).

4. Compute conditional choice probabilities using (3).

5. Evaluate likelihood.

6. Check for convergence.

7. Repeat until convergence of likelihood function.



Discussion

This approach is time-intensive since it requires:

▶ numerical integration,

▶ repeated optimization,

▶ a relatively large state space.

The advantage is that we can deal with non-stationary problems
and can easily extend the method to deal with partially unobserved
state variables (such as wages.)



Type I Extreme Value Errors (McFadden & Rust)

The model above can be simplified by assuming that ε follow a
type I extreme value distribution. Setting σ = 1, we obtain

P[d |x , θ] = exp v(x , d , θ)∑
d ′

exp v(x , d ′, θ)

Recall that v(x , d , θ) is the conditional value function associated
with choice d .



The Social Surplus Function

The expected value function or the social surplus function
(McFadden ’81) is defined as

V (x) =

∫
V (x , ε) q(ε|x) dε

=

∫
max
d

{
u(x , d) + ε(d) + β

∫
V (x ′)f (x ′|x , d)dx ′

}
q(ε|x)dε

= Γ
(
V (x)

)
(4)

Thus V (x) is a fixed point of the mapping above.



Expected Value Function and Conditional Value Function

Using our definitions, we have

v(x , d) = u(x , d) + β

∫
V (x ′)f (x ′|x , d) dx ′

and

V (x) =

∫
max
d

{v(x , d) + ε(d)} q(ε|x) dε



Properties of Extreme Value Distributions I

Let (Y1, . . . ,YD) be INID (independent, non-identically
distributed) extreme value random variables with location
parameters (α1, . . . , αD) and common scale parameter σ, i.e. the
distribution of Yd is given by:

F (y | αd , σ) = P{Yd ≤ y | αd , σ} (5)

= exp

{
− exp

{
−(x − αd)

σ

}}
.



Properties of Extreme Value Distributions II

We would like to show that this family is max-stable by proving
that max(Y1, . . . ,YD) is an extreme value random variable with
scale parameter σ and location parameter

α = σ ln

[
D∑

d=1

exp{αd/σ}

]
(6)



Properties of Extreme Value Distributions III

P(max
d

Yd ≤ x) = ΠD
d=1 P(Yd ≤ x)

= ΠD
d=1 exp

{
− exp

{
−(x − αd)

σ

}}
= exp

{∑
d

− exp

{
−(x − αd)

σ

}}

= exp

{
exp

{
−x

σ

}∑
d

exp
{αd

σ

}}

= exp

{
− exp

{−(x − σ ln
∑

exp αd
σ )

σ

}}



Properties of Social Surplus Function I

We would like to show that the Social Surplus function or expected
value function has the form given by

V (X ) = σγ + σ ln

[
D∑

d=1

exp{vd/σ}

]
.

we use the fact that if {ϵd} are independent random variables, we
have following formula for the probability distribution of the
random variable maxd=1,...,D [vd + ϵd ]:

Pr

{
max

d=1,...,D
[vd + ϵd ] ≤ x

}
=

D∏
d=1

Pr {vd + ϵd ≤ x} .

Now, let ϵd have an extreme value value distribution with location
parameter αd = 0 and scale parameter σ > 0. Then it is easy to
see that vd + ϵd is also an extreme value random variate with
location parameter vd and scale parameter σ.



Properties of Social Surplus Function II

As we showed above, max[vd + ϵd ] is also extreme value. Hence

Pr

{
max

d=1,...,D
[vd + ϵd ] ≤ x

}
= exp

{
− exp

{
−(x − α)

σ

}}
,

where the location parameter is given by ln
[∑D

d=1 exp{vd/σ}
]
.

Recall that the expectation of a single extreme value random
variable., ϵ̃, with location parameter α and scale parameter σ is
given by:

E (ϵ̃) = α+ σ γ, (7)

where γ = .577216 . . . is Euler’s constant.
The form of the Social Surplus Function then follows from the
formula for the expectation of an extreme value random variable.



Deriving the Conditional Choice Probabilities I

We want to show that the partial derivative of
maxd=1,...,D [vd + ϵd ] equals the indicator function I{d = δ(ϵ)}.
Consider first the case that alternative d yields the highest utility,
i.e. d = δ(ϵ). We then have

vd + ϵd > vd ′ + ϵd ′ ∀d ′ ̸= d

Thus

vd + ϵd = max
d ′=1,...,D

[vd ′ + ϵd ′ ]

and hence we have

∂maxd=1,...,D [vd + ϵd ]

∂vd
= 1



Deriving the Conditional Choice Probabilities II

Next consider the case that alternative d is not the utility
maximizing choice, i.e. d ̸= δ(ϵ). In that case we have:

max
d ′=1,...,D

[vd ′ + ϵd ′ ] > vd + ϵd

It follows that we have

∂vd maxd=1,...,D [vd + ϵd ]

∂vd
= 0

Thus far we have assumed that the optimal choice is unique. For
the sake of completeness consider the case in which the optimal
choice is not unique. However, based on our assumption on the
distribution of error terms, this case has probability zero. Thus we
conclude that the identity above holds with probability 1.



Deriving the Conditional Choice Probabilities III

We want to appeal to the Lebesgue Dominated Convergence
Theorem to justify the interchange of integration and
differentiation operators. As long as the distribution of the {ϵd}’s
has a density, the derivative

∂maxd=1,...,D [vd + ϵd ]

∂vd
= I{d = δ(ϵ)}.

exists almost everywhere with respect to this density and is
bounded by 1, so that the Lebesgue Dominated Convergence
Theorem applies.



Deriving the Conditional Choice Probabilities IV

As a consequence, we obtain the Williams-Daly-Zachary Theorem:

∂V (X )

∂vd
=

∂

∂vd

∫
....

∫
max

d=1,..,D
[vd + ϵd ] f (ϵ1, ..., ϵD |X ) dϵ1 · · · dϵD

=

∫
....

∫
∂

∂vd
max

d=1,..,D
[vd + ϵd ] f (ϵ1, ..., ϵD |X ) dϵ1 · · · dϵD

=

∫
....

∫
I{d = δ(ϵ1, ..., ϵD)} f (ϵ1, ..., ϵD |X ) dϵ1 · · · dϵD

= P{d |X}



Deriving the Conditional Choice Probabilities V

Then by the Williams-Daly-Zachary Theorem we have

P{d |X} =
∂

∂vd

[
σγ + σ ln(

D∑
d=1

exp(vd/σ))

]

=
exp vd/σ∑D

d ′=1 exp vd ′/σ
.

Setting σ = 1 gives the familiar result.



Another Contraction Mapping

We have shown that the type I extreme value assumption then
implies the following result:

V (x) = γ + ln

(∑
d ′

exp v(x , d ′)

)

Hence v(x , d) is the unique fixed point of the mapping:

v(x , d) = u(x , d)+β

∫ (
γ + ln

(∑
d ′

exp v(x ′, d ′)

))
f (x ′|x , d) dx ′



The Finite Horizon Case

If T is finite, then vt(x , d) is recursively defined as

vT (xt , dt , θ) = uT (xt , dt , θ)

vt(xt , dt , θ) = u(xt , dt , θ) + β

∫ γ + ln

∑
dt+1

exp vt+1(xt+1, dt+1, θ)


f (xt+1|xt , dt , θ) dxt+1

In the infinite horizon case, v(x , d , θ) is just the fixed point of the
contraction mapping above.



The Rust Algorithm

The Rust algorithm the consists of the following steps:

1. pick parameter vector θ

2. compute v(x , d) by solving (4)

3. evaluate P(d |x) (closed form solution)

4. evaluate likelihood

5. check for convergence

6. repeat



Discussion

The type I extreme value assumption facilitates the analysis
because

▶ it provides a closed form solution of the conditional choice
probabilities;

▶ reduces the curse of dimensionality by focusing on v(x , d).

The main drawback of this approach is that we still need to
compute v(x , d) numerically, which is computationally expensive if
x is large.



CCP Estimation (Hotz & Miller)

▶ We can further simplify the computation of the conditional
value functions by conditioning on observed choices.

▶ Hotz and Miller’s (1993) Conditional Choice Probability
estimator (CCP) accomplishes this.

▶ The key insight of HM is that we can invert equation (3) and
express (the normalized differences of) v(x , d) as functions of
the conditional choice probabilities P(d |x).

▶ Hotz, Miller, Sanders and Smith (1994) extend these ideas to
formulate an estimator of DDC model that relies on forward
simulation to compute the conditional value functions, instead
of backward induction.



Swapping the Nested Fixed Point Algorithm

To see how this works, we follow Aguirregabiria and Mira (2002).
We treat the state space as discrete and rewrite (4) as

V (x) =
∑
d

P(d |x)

(
u(x , d) + E [ε|d , x ] + β

∑
x ′

V (x ′)f (x ′|x , d)

)
(8)

where

E [ε|x , d ] = 1

P(d |x)

∫
ε(d)1 [δ(x , ε) = d ] q(ε|x)dε (9)



Another Nice Property of Type I Extreme Value Errors

If ε is distributed as type I extreme value, then it can be shown
that:

E [ε|x , d ] = γ − ln (P(d |x)) = E [ε|P, d ]

where γ is Euler’s constant.

This result is important since we can now express the expected
value function as a function of the structural parameters and the
conditional choice probabilities.



Consider, for simplicity, the case where D = 2. We want to show
that:

E (ϵ̃d | d ,X ) = γ − ln(P{d |X})

To simplify the notation, define pd = P{d |X}. First, note that:

v1 − v2 = ln(p1)− ln(p2)

= ln(p1/(1− p1))



Second, d = 1 if and only if:

ϵ2 < ϵ1 + v1 − v2

= ϵ1 + ln(p1/(1− p1))

Third, notice that:

E (ϵ1| d = 1,X ) =

∫ ∞

−∞

∫ ϵ1+ln(p1/(1−p1))

−∞
ϵ1 f (ϵ1, ϵ2) dϵ2 dϵ1

/
p1

=

∫ ∞

−∞
ϵ1 F (ϵ1 + ln(p1/(1− p1))) f (ϵ1) dϵ1

/
p1



Substituting in the density and distribution function of an extreme
value distribution and doing some algebra yields:

E (ϵ1| d = 1,X ) =

∫ ∞

−∞
ϵ1 exp(−(ϵ1 + ln p1)) exp(− exp(−(ϵ1 + ln p1))dϵ1

The result then follows from the formula for the expectation of an
extreme value random variable.



Using Matrix Algebra

Stacking the M equations, we can rewrite (5) using matrix algebra
as:

V︸︷︷︸
[M×1]

=
∑
d

P(d)︸ ︷︷ ︸
[M×1]

. ∗

u(d)︸︷︷︸
[M×1]

+ e(d ,P)︸ ︷︷ ︸
[M×1]

+ β F (d)︸ ︷︷ ︸
[M×M]

V


where .∗ represents element-by-element multiplication



An Example

X ∈ {1, 2}, and d ∈ {a, b}. Then we have:

V (1) = P[a|1] (u(1, a) + e(1, a) + β (f a11V (1) + f a12V (2)))

+ P[b|1]
(
u(1, b) + e(1, b) + β(f b11V (1) + f b12V (2)

)
V (2) = P[a|2] (u(2, a) + e(2, a) + β (f a21V (1) + f a22V (2)))

+ P[b|2]
(
u(2, b) + e(2, b) + β(f b21V (1) + f b22V (2)

)
V (1) =

∑
d

P[d |1]

(
u(1, d) + e(1, d) + β

∑
i

f d1iV (i)

)

V (2) =
∑
d

P[d |2]

(
u(2, d) + e(2, d) + β

∑
i

f d2iV (i)

)

V (x) =
∑
d

P[d |x ]

(
u(x , d) + e(x , d) + β

∑
i

f dx ,iV (i)

)



Hence V (x) is defined by a linear system of M equations in M
unknowns. This system can be solved to obtain:

V = φ(P)

= (IM − βF u(P))−1

(∑
d

P(d). ∗ (u(d) + e(d ,P))

)
(10)

where
F u(P) =

∑
d

P(d)F (d)

is the M ×M transition matrix induced by P. Note that the
solution of the expected value function depends on θ since u and F
depend on θ.



The HM-AM algorithm:

1. Obtain a nonparametric estimate of PN(d).

2. Pick θ

3. Compute VN(x , θ) = φ(PN , θ)

4. Compute vN(x , d , θ).

5. Compute P(d |x , θ).
6. Compute likelihood.

7. Iterate until convergence of the likelihood function.



Some Additional Discussion

▶ The main advantage of the HM-AM algorithm is we only need
to solve a system of linear equations to obtain the expected
value functions.

▶ The main disadvantage is that we need to be able to estimate
the full set of conditional choice probabilities which places
high demands on the available data.

▶ AM (2002) show that we can generalize the HM approach by
iterating on the choice probabilities. They also show that this
estimator is asymptotically efficient.

▶ Arcidiacono and Miller (2012) show how to extend the CCP
estimators to allow for unobserved heterogeneity of the
Heckman-Singer type.

▶ Magnac and Thesmar (2002) use the HM inversion result to
show that DDC models are non-parametrically not identified,
extending an earlier result by Rust (1994).


