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This note reviews the canonical random coefficients logit or “BLP” model

à la Berry et al. (1995). We outline details of the model, the contraction

mapping, and both classical and Bayesian approaches to estimation.

1 Model

Let uijt denote the indirect utility of consumer i for product j = 0, 1, . . . , J at time

t = 1, . . . , T , which is specified as:

uijt = x′jtβi + ξjt + εijt (1)

where ui0t = εi0t is a normalization for the outside good j = 0. Here βi denotes

the consumer’s preference for characteristics xjt ∈ RK (including price), ξjt is a

market-level error term representing unobserved shocks to the demand for good j,

and εijt is an error term with distribution Fε(·) representing all other unobservables

associated with consumer i.

Assume that individual taste parameters belong to a location-scale family:

βi = β̄ + ηi, ηi ∼ Fη(·|Σ) (2)

where β̄ represents average preferences in the population (the “linear” parameters)

and Σ parameterizes the variances of the distribution of tastes (the “nonlinear”

parameters). We can then rewrite utility as:

uijt = x′jt(β̄ + ηi) + ξjt + εijt

= x′jtβ̄ + ξjt + x′jtηi + εijt

= δjt(β̄, ξjt) + x′jtηi + εijt

where δjt ≡ δjt(β̄, ξjt) captures the “mean utility” for j at time t in the population.

Under the assumption of utility maximization and iid TIEV errors, the market share
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for good j at time t is given by:

σjt =

∫
1 (uijt ≥ uikt ∀k 6= j) dFη(ηi|Σ)dFε(εit)

=

∫ exp
(
δjt(β̄, ξjt) + x′jtηi

)
1 +

∑J
k=1 exp

(
δkt(β̄, ξkt) + x′ktηi

)dFη(ηi|Σ).

(3)

2 Share Inversion and Contraction Mapping

Many estimation approaches (both classical and Bayesian) require an inversion of the

system in (3). That is, we want to exchange an expression of the shares as a function

of mean utility parameters with an expression of the mean utility parameters as a

function of the shares:

sjt = σjt(δ1t, . . . , δJt,Σ) =⇒ δjt = σ−1
jt (s1t, . . . , sJt,Σ). (4)

The inversion in (4) does not have an analytic solution because of the integral over

nonlinear parameters.

BLP solve for δjt via a contraction mapping. Suppose we know the value of

nonlinear parameter vector Σ and have an initial guess of the mean utilities {δ1
jt}.

Then for h = 1, 2, . . . do the following:

δh+1
jt = δhjt + log(sjt)− log

∫ exp
(
δhjt + x′jtηi

)
1 +

∑J
k=1 exp

(
δhkt + x′ktηi

)dFη(ηi|Σ)

 (5)

and stop only when ||δh+1
jt − δhjt|| < ε. Note that because we are conditioning on

Σ, the integral on the right-hand-side of (5) can be computed using Monte Carlo

integration. That is, we can draw a set of ηi ∼ Fη(·|Σ) prior to the contraction

mapping and then, for each iteration, plug them into the share expression on the

right-hand-side of (5) and take an average. Also note that some care must be taken

when choosing the tolerance ε for the inside loop. If the tolerance is too small, then

the contraction mapping algorithm will not converge. If the tolerance is too large,

then numerical errors in the inside loop can propagate to the outer loop and affect

estimation and inference. For guidance, see the discussion in Section 3 of Conlon

and Gortmaker (2020).
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3 Classical Estimation

3.1 GMM Obejective Function

To address the potential endogeneity of product characteristics, assume we have

instruments zjt that are excluded from the demand equation. BLP propose a GMM

estimator based on the moment condition E[ξjt|zjt, xjt] = 0. The empirical analog

can be written as:

E[G(Σ)] = 0 where G(Σ) =
1

TJ

T∑
t=1

J∑
j=1

ξjt(Σ)zjt. (6)

Then for a given weighting matrix W , the GMM estimator is defined as the solution

to the problem:

min
Σ
Q(Σ) = G(Σ)′WG(Σ). (7)

However, given a candidate value of Σ, the evaluation of sample moments G(Σ)

requires first finding the implied values of the demand shocks ξjt. This motivates

BLP’s nested fixed point algorithm.

3.2 Nested Fixed Point Approach

• The outer loop searches over Σ (via derivative-based methods like quasi-

Newton or nonderivative, simplex-based methods like Nelder-Mead).1

• The inner loop constructs the GMM objective function Q(Σ) to be minimized

given a candidate Σ.

(a) Use the BLP contraction mapping to solve for mean utilities δ̂jt.

(b) Use 2SLS to estimate linear coefficients β̄.

δ̂jt = x′jtβ̄ + ξjt

(c) Obtain residuals ξ̂jt = δ̂jt − ˆ̄β and construct the sample moments:

Ĝ(Σ) =
1

TJ

T∑
t=1

J∑
j=1

ξ̂jt(Σ)zjt.

1Derivative-based methods have been found to generally outperform simplex-based methods
(Dubé et al., 2012; Knittel and Metaxoglou, 2014; Conlon and Gortmaker, 2020).
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(d) Evaluate the GMM objective function:

Q(Σ) = Ĝ(Σ)′W Ĝ(Σ).

3.3 MPEC Approach

Dubé et al. (2012) study the numerical performance of the nested fixed point al-

gorithm outlined above and show how error inside the BLP contraction mapping

propagates into the GMM optimization problem in the outer loop, which can lead

to biased parameter estimates. The authors propose an alternative based on math-

ematical programming with equilibrium constraints (MPEC).

min
Σ

Q(Σ) = G(Σ)′WG(Σ)

s.t. σ(δ,Σ) = s

An MPEC approach can be faster and avoids the numerical issues associated with

the nested inner loop.

4 Bayesian Estimation

Jiang et al. (2009) propose a Bayesian approach to estimation and inference for

the random coefficients logit model. We outline details of the likelihood, prior, and

posterior sampling strategies below.

Model Likelihood The model definition and underlying assumptions mirror those

made in BLP. Note that at any point in time t, market shares (s1t, . . . , sJt) are

stochastic only because of the demand shocks (ξ1t, . . . , ξJt). Therefore, one addi-

tional parametric assumption is made about demand shocks in order to define a

model likelihood:

ξjt ∼ N(0, τ2). (8)

Then using the definition of the mean utilities δjt = x′jtβ̄ + ξjt, we have:

δjt ∼ N(x′jtβ̄, τ
2). (9)
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Now the density of observed shares is determined by the mean utility parameters

through the familiar share inversion:

sjt = σjt(δ1t, . . . , δJt,Σ) =⇒ δjt = σ−1
jt (s1t, . . . , sJt,Σ). (10)

We can then define the likelihood function using the change-of-variables theorem:

p(s|β̄,Σ, τ2) =

T∏
t=1

J∏
j=1

p(sjt|β̄,Σ, τ2)

=
T∏
t=1

J∏
j=1

φ
(
σ−1
jt (s1t, . . . , sJt,Σ)/τ

)
|Jδt→st |

=

T∏
t=1

|Jst→δt |−1
J∏
j=1

φ (δjt/τ) (11)

where φ(·) is the standard normal pdf and Jst→δt is the Jacobian from the mapping

of shares to mean utilities. Specifically, the Jacobian is defined as:

Jst→δt =


∂σ1t(δt,Σ)

∂δ1t

∂σ1t(δt,Σ)
∂δ2t

· · · ∂σ1t(δt,Σ)
∂δKt

∂σ2t(δt,Σ)
∂δ1t

∂σ2t(δt,Σ)
∂δ2t

· · · ∂σ2t(δt,Σ)
∂δKt

...
...

. . .
...

∂σKt(δt,Σ)
∂δ1t

∂σKt(δt,Σ)
∂δ2t

· · · ∂σKt(δt,Σ)
∂δKt

 (12)

where

∂σjt(δt,Σ)

∂δkt
=


∫
σijt(δt,Σ)σikt(δt,Σ)dFη(ηi|Σ) if k 6= j∫
σijt(δt,Σ)

[
1− σijt(δt,Σ)

]
dFη(ηi|Σ) if k = j.

(13)

Note that the Jacobian depends on both linear and nonlinear parameters. However,

given Σ and observed shares, the mean utilities can be uniquely determined through

the share inversion (i.e., contraction mapping). Therefore, the process of computing

the Jacobian follows from the inner loop of BLP’s nested fixed point algorithm.

Specifically, we can do the following.

i. Given a candidate Σ∗, first generate Monte Carlo draws of η∗i for i = 1, . . . ,H.

ii. Solve for δt using BLP contraction mapping (where shares are evaluating using
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Monte Carlo draws of η∗i ). Also save out individual-level choice probabilities

σijt for i = 1, . . . ,H evaluated at “final” δ∗t .

iii. Compute elements of Jacobian as

∂σjt(δt,Σ)

∂δkt
=


1

H

H∑
i=1

σijt(δ
∗
t ,Σ

∗)σikt(δ
∗
t ,Σ

∗) if k 6= j

1

H

H∑
i=1

σijt(δ
∗
t ,Σ

∗)
[
1− σijt(δ∗t ,Σ∗)

]
if k = j.

(14)

Prior In addition to a likelihood function, a Bayesian analysis also requires the

specification of priors for all model parameters: β̄, Σ, and τ2. Jiang et al. (2009)

use conditionally conjugate priors for β̄ and τ2:

β̄ ∼ N(β̄0, Vβ̄) (15)

τ2 ∼ ν0s
2
0

χ2
ν0

. (16)

To specify a prior for Σ, they first parameterize Σ in terms of the K(K + 1)/2

elements of its Cholesky root:

Σ = U ′U where U =


exp(r11) r12 · · · r1K

0 exp(r22) · · · r2K

...
...

. . .
...

0 0 · · · exp(rKK)

 . (17)

Note that the diagonals are enforced to be positive to ensure Σ is positive definite.

Then we can place normal priors on the elements in the upper diagonal of U :

rkk ∼ N(0, s2
diag) (18)

rk` ∼ N(0, s2
off) (19)

where separate variances are used for the diagonal and off-diagonal terms to account

for the fact that the diagonals are on a log scale.

Posterior Given the model likelihood in (11) and priors in (15), (16), and (18),

the complete posterior is defined as:
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p(β̄,Σ, τ2|s) ∝ p(s|β̄,Σ, τ2)p(β̄,Σ, τ2)

=

∏
t

∏
j

p(sjt|β̄,Σ, τ2)

 p(β̄)p(Σ)p(τ2)

∝

∏
t

|Jst→δt |−1
∏
j

φ (δjt/τ)


× |Vβ̄|−1/2 exp

(
−1

2
(β̄ − β̄0)′V −1

β̄
(β̄ − β̄0)

)
×

K∏
k=1

exp

(
−

r2
kk

2s2
diag

)
K−1∏
k=1

K∏
`=k+1

exp

(
−
r2
k`

2s2
off

)

× (τ2)−(ν0/2+1) exp

(
−ν0s

2
0

2τ2

)
.

Computaiton Sampling from the posterior above can be achieved with a Metropolis-

within-Gibbs sampler which iteratively draws from the following full conditionals.

Σ|β̄, τ2,data (20)

β̄, τ2|Σ,data (21)

Specifically, draws from each full conditional can be made as follows.

1. (Nonlinear Parameters) Conjugate priors for nonlinear parameters Σ do not

exist and so we must draw from the first full conditional using a Metropolis-

Hastings step.

(a) Propose r∗jk ∼ N(r, s2
step) and set Σ∗ = U∗′U∗ where the upper diagonals

are filled with r∗jk.

(b) Use the BLP contraction mapping to solve for δ∗jt. Then, as discussed

above, use the stored draws of choice probabilities σijt(δ
∗
t ,Σ

∗) to con-

struct the Jacobian which is is used to evaluate the likelihood.

(c) Accept (Σ∗, δ∗t ) with probability:

α = min

{
1,
p(s|β̄,Σ∗, τ2)p(Σ∗)

p(s|β̄,Σ, τ2)p(Σ)

}
.
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2. (Linear Parameters) Draw the pair (β̄, τ2) from the posterior of a univariate

Bayesian regression model (or Bayesian IV regression model):

δjt = x′jtβ̄ + ξjt, ξjt ∼ N(0, τ2) (22)

with conjugate priors given in (15) and (16).
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