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Note: This is the third of three lectures on programming. Please take a look at the first two lectures if you haven’t yet. Nothing
that we will cover here is critically dependent on these earlier lectures. However, I’m going to assume that you have a good under-
standing of how R functions and environments generally work. Our goal for today is to dramatically speed up our programming
tasks by getting them to run in parallel.

Software requirements
R packages

• New: parallel, future, future.apply, furrr, RhpcBLASctl, tictoc
• Already used: tidyverse, data.table, pbapply, memoise, here, hrbrthemes

The code chunk below will install (if necessary) and load all of these packages for you. Note that the parallel package
is bundled together with the base R installation and should already be on your system. I’m also going to call the fu-
ture::plan() function and set the resolution to “multisession”. Don’t worry what this means right now — I’ll explain in
due course — just think of it as a convenient way to set our desired parallel programming behaviour for the rest of this
document.
## Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tictoc, parallel, pbapply, future, future.apply, tidyverse,

hrbrthemes, furrr, RhpcBLASctl, memoise, here)
## My preferred ggplot2 plotting theme (optional)
theme_set(hrbrthemes::theme_ipsum())

## Set future::plan() resolution strategy
plan(multisession)

Prologue
A few lectures back, we talked about the huge difference that some relatively new packages have made to spatial analysis
in R. Complex spatial operations that previously necessitated equally complex spatial objects have been superseded by

1

https://github.com/uo-ec607/lectures
https://raw.githack.com/uo-ec607/lectures/master/10-funcs-intro/10-funcs-intro.html
https://raw.githack.com/uo-ec607/lectures/master/11-funcs-adv/11-funcs-adv.html


much simpler and more intuitive tools. If that wasn’t good enough, these new tools are also faster. We are going to see
something very similar today. Parallel programming is a big and complex topic, with many potential pitfalls. However,
software innovations and some amazing new(ish) packages have made itmuch easier and safer to program in parallel.1

With that in mind, I’m going to structure today’s lecture back-to-front. In particular, I’m going to start with some moti-
vating examples. My primary goal is to demonstrate both the ease and immediate payoff of “going parallel”. Only after
convincing you of these facts will we get into some of the technical details that were abstracted away behind the scenes.
The latter part of the lecture will go over parallel programming in more general terms (i.e. not R-specific) and highlight
potential pitfalls that you should be aware of.

Ready? Let’s go.

Example 1
Our first motivating example is going to involve the same slow_square() function that we saw in the previous lecture:

# library(tidyverse) ## Already loaded

## Emulate slow function
slow_square =

function(x = 1) {
x_sq = x^2
d = tibble(value = x, value_squared = x_sq)
Sys.sleep(2)
return(d)
}

Let’s iterate over this function using the standard lapply() method that we’re all familiar with by now. Note that this
iteration will be executed in serial. I’ll use the tictoc package (link) to record timing.

# library(tictoc) ## Already loaded

tic()
serial_ex = lapply(1:12, slow_square) %>% bind_rows()
toc()

## 24.066 sec elapsed

As expected, the iteration took about 24 seconds to run because of the enforced break after every sequential iteration
(i.e. Sys.sleep(2)). On the other hand, this means that we can easily speed things up by iterating in parallel.

Before continuing, it’s worth pointing out that our abilty to go parallel hinges on the number of CPU cores available to us.
The simplest way to obtain this information from R is with the parallel::detectCores() function:

# future::availableCores() ## Another option
detectCores()

## [1] 12

So, I have 12 cores to play with on my laptop.2 Adjust expectations for you own system accordingly.

Okay, back to our example. I’m going to implement the parallel iteration using the future.apply package (link) — more
on this later. Note that the parameters of the problem are otherwise unchanged.

# library(future.apply) ## Already loaded
# plan(multisession) ## Already set above

1I should emphasise that the R-core team has provided excellent support for parallel programming for over a decade. But there’s no question in my
mind that the barriers to entry have recently been lowered.

2A Dell Precision 5530 running Arch Linux, if you’re interested.
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tic()
future_ex = future_lapply(1:12, slow_square) %>% bind_rows()
toc(log = TRUE)

## 4.309 sec elapsed

Look at at that: A 6× speedup! Even more impressively, consider how little the syntax changed. I basically just had to
tell R that I wanted to implement the iteration in parallel (i.e. plan(multisession)) and slightly amend my lapply() call
(i.e. future_lapply()).

Let’s confirm that the output is the same.

all_equal(serial_ex, future_ex)

## [1] TRUE

For those of you who prefer the purrr::map() family of functions for iteration and are feeling left out; don’t worry. The
furrr package (link) has you covered. Once again, the syntax for these parallel functions will be very little changed from
their serial versions. We simply have to tell R that we want to run things in parallel with plan(multisession) and then
slightly amend our map call to future_map_dfr().3

# library(furrr) ## Already loaded
# plan(multisession) ## Already set above

tic()
furrr_ex = future_map_dfr(1:12, slow_square)
toc()

## 4.404 sec elapsed

Howeasywas that? We hardly had to change our original code and didn’t have to pay a cent for all that extra performance.4

Congratulate yourself on already being such an expert at parallel programming.

Example 2
Our secondmotivating examplewill involve amore realistic and slightlymore computationally-intensive case: Bootstrap-
ping coefficient values for hypothesis testing.5 I’ll also spend a bit more time talking about the packages we’re using and
what they’re doing.

Start by creating a fake data set (our_data) and specifying a bootstrapping function (bootstrp()). This functionwill draw
a sample of 10,000 observations from the the data set (with replacement), fit a regression, and then extract the coefficient
on the x variable. Note that this coefficient should be around 2 according to our simulation setup.

## Set seed (for reproducibility)
set.seed(1234)
# Set sample size
n = 1e6

## Generate a large data frame of fake data for a regression
our_data =

tibble(x = rnorm(n), e = rnorm(n)) %>%
mutate(y = 3 + 2*x + e)

## Function that draws a sample of 10,000 observations, runs a regression and

3In this particular case, the extra “r” at the end tells future to concatenate the data frames from each iteration by rows.
4Not to flog a dead horse, but as I pointed out in the very first lecture of this course: Have you seen the price of a Stata/MP license recently? Not to

mention the fact that you effectively pay per core…
5It’s an aside, but I’m strongly of the opinion that simulation methods like bootstrapping provide a far more intuitive way to understand statistics.

Don’t believe me? Watch John Rausser’s fantastic talk: “Statistics Without The Agonizing Pain”. Seriously, watch it.
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## extracts the coefficient value on the x variable (should be around 2).
bootstrp =

function(i) {
## Sample the data
sample_data = sample_n(our_data, size = 1e4, replace = TRUE)
## Run the regression on our sampled data and extract the extract the x
## coefficient.
x_coef = lm(y ~ x, data = sample_data)$coef[2]
## Return value
return(tibble(x_coef = x_coef))
}

Serial implementation (for comparison)

Let’s implement the function in serial first to get a benchmark for comparison.

set.seed(123L) ## Optional to ensure that the results are the same

## 10,000-iteration simulation
tic()
sim_serial = lapply(1:1e4, bootstrp) %>% bind_rows()
toc(log = TRUE)

## 37.369 sec elapsed

So that took about 35 seconds on my system. Not a huge pain, but let’s see if we can do better by switching to a parallel
(multicore) implementation. For the record, though here is a screenshot of my system monitor, showing that only one
core was being used during this serial version.

Parallel implemention using the future ecosystem

All of the parallel programming that we’ve been doing so far is built on top of Henrik Bengtsson’s amazing future package
(link). A “future” is basically a very flexible way of evaluating code and output. Among other things, this allows you
to switch effortlessly between evaluating code in serial or asynchronously (i.e. in parallel). You simply have to set your
resolution plan— “sequential”, “multisession”, “cluster”, etc. — and let future handle the implementation for you.

Here’s Henrik describing the core idea in more technical terms:

In programming, a future is an abstraction for a value that may be available at some point in the future. The
state of a future can either be unresolved or resolved…Exactly howandwhen futures are resolved depends on
what strategy is used to evaluate them. For instance, a future canbe resolvedusing a sequential strategy, which
means it is resolved in the current R session. Other strategies may be to resolve futures asynchronously, for
instance, by evaluating expressions in parallel on the current machine or concurrently on a compute cluster.

As I’ve tried to emphasise, future is relatively new on the scene. It is certainly not the first or only way to implement
parallel processes in R. However, I think that it provides a simple and unified framework that makes it the preeminent
choice. What’s more, the same commands that we use here will carry over very neatly to more complicated settings
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involving high-performance computing clusters. We’ll experience this first hand when we get to the big data section of
the course.

You’ve probably also noted that keep referring to the “future ecosystem”. This is because future provides the framework
for other packages to implement parallel versions of their functions. The two that I am focusing on today are

1. the future.apply package (link), also by Henrik, and
2. the furrr package (link), an implementation for purrr by Davis Vaughan.

In both cases, we start by setting the plan for resolving the future evaluation (here: plan(multisession)). We then
call our functions — which involve minor modifications of their serial equivalents — and let future magic take care of
everything else.

1) future.apply Here’s the future.apply::future_lapply() parallel implementation. Note that I’m adding the fu-
ture.seed=123L option to ensure that the results are the same. While not strictly necessary, it’s always a good idea to set
a random seed with simulations for the sake of reproducibility.

# library(future.apply) ## Already loaded
# plan(multisession) ## Already set above

## 10,000-iteration simulation
tic()
sim_future = future_lapply(1:1e4, bootstrp, future.seed=123L) %>% bind_rows()
toc()

## 10.635 sec elapsed

2) furrr And here’s the furrr::future_map_dfr() implementation. Similar to the above, note that I’m only adding
the .options=future_options(seed=123L) option to ensure that the output is exactly the same.

# library(furrr) ## Already loaded
# plan(multisession) ## Already set above

## 10,000-iteration simulation
tic()
sim_furrr = future_map_dfr(1:1e4, bootstrp, .options = furrr_options(seed=123L))
toc()

## 9.775 sec elapsed

Results

As expected, we dramatically cut down on total computation time by going parallel. Note, however, that the parallel
improvements for this example didn’t scale linearly with the number of cores on my system (i.e. 12). The reason has to
do with the overhead of running the parallel implementations — a topic that I cover in more depth toward the bottom of
this document. Again, for the record, here is a screenshot showing that all of my cores were now being used during these
parallel implementations.
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While it wasn’t exactly hard work, I think we deserve to see the results of our bootstrapping exercise in nice plot form.
I’ll use the sim_furrr results data frame for this, although it doesn’t matter since they’re all the same thanks to our our
random seed. As you can see, the estimated coefficient values are tightly clustered around our simulated mean of 2.
sim_furrr %>%

ggplot(aes(x_coef)) +
geom_density(col=NA, fill="gray25", alpha=0.3) +
geom_vline(xintercept=2, col="red") +
labs(
title = "Bootstrapping example",
x="Coefficient values", y="Density",
caption = "Notes: Density based on 10,000 draws with sample size of 10,000 each."
)
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Notes: Density based on 10,000 draws with sample size of 10,000 each.

Other parallel options

Futures are not the only game in town for parallel programming in R. For example, I’m going to talk about the base
R mclapply function further below. However, one particular option that I want to mention very briefly is the pbapply
package (link). Aswe saw during the first programming lecture, this package provides a lightweightwrapper on the *apply
functions that adds a progress bar. However, the package also adds a very convenient option formulticore implementation.
You basically just have to add cl=CORES to the call. While it doesn’t rely on futures, pbapply also takes care of all the
OS-specific overhead for you. See here for an interesting discussion on what’s happening behind the scenes.

You will need to run this next chunk interactively to see the progress bar.

set.seed(123) ## Optional to ensure results are exactly the same.

# library(pbapply) ## Already loaded

## 10,000-iteration simulation
tic()
sim_pblapply = pblapply(1:1e4, bootstrp, cl = parallel::detectCores()) %>% bind_rows()
toc()
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## 8.219 sec elapsed

Aside: On the subject of progress bars, check out the progressr package (link) for a unified framework that
works with all kinds of functions and (a)syncronous backends.

General parallel programming topics
Motivating examples out of the way, let’s take a look underneath the hood. I want to emphasise that this section is more
“good to know” than “need to know”. Even if you take nothing else away from rest of this lecture, you are already well
placed to begin implementing parallel functions at a much larger scale.

And yet… while you don’t need to know the next section in order to program in parallel in R, getting a solid grasp of the
basics is valuable. It will give you a better understanding of how parallel programming works in general and help you to
appreciate how much future and co. are doing behind the scenes for you. It will also help you to understand why the
same code runs faster on some systems than others, and avoid some common pitfalls.

Terminology

I’ll start by clearing up some terminology.

• Socket: The physical connection on your computer that houses the processor. Most work and home computers —
even very high-end ones — only have one socket and, thus, one processor. However, they can have multiple cores.
Speaking of which…

• Core: The part of the processor that actually performs the computation. Back in the day, processors were limited
to a single core. However, most modern processors now house multiple cores. Each of these cores can perform
entirely separate and independent computational processes.

• Process: A single instance of a running task or program (R, Dropbox, etc). A single core can only run one process
at a time. However, it may give the appearance of doing more than that by efficiently scheduling between them.
Speaking of which…

• Thread: A component or subset of a process that can, inter alia, share memory and resources with other threads.
We’ll return to this idea as it applies to hyperthreading in a few paragraphs.

• Cluster: A collection of objects that are capable of hosting cores. This could range from a single socket (on your
home computer) to an array of servers (on a high-performance computing network).

You may wondering where the much-referenced CPU (i.e. central processing unit) fits into all of this. Truth be told, the
meaning of CPUhas evolvedwith the advent of new technology likemulticore processors. For the purposes of this lecture
I will use the following definition:

No. of CPUs = No. of sockets × No. of physcial cores × No. of threads per core

If nothing else, this is consistent with the way that my Linux system records information about CPU architecure via the
lscpu shell command:

$ ## Only works on Linux
$ lscpu | grep -E '^Thread|^Core|^Socket|^CPU\('

## CPU(s): 12
## Thread(s) per core: 2
## Core(s) per socket: 6
## Socket(s): 1

Note that the headline “CPU(s)” number is the same that I got from running parallel::detectCores() earlier (i.e. 12).

A bit more about logical cores and hyperthreading

Logical cores extend or emulate the ability of physical cores to perform additional tasks. The most famous example is
Intel’s hyperthreading technology, which allows a single core to switch very rapidly between two different tasks. This
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mimics the appearance and performance (albeit to a lesser extent) of an extra physical core. You may find this YouTube
video helpful for understanding the difference in more depth, including a nice analogy involving airport security lines.

Taking a step back, you don’t have to worry too much about the difference between physical and logical (hyperthreaded)
cores for the purpose of this lecture. R doesn’t care whether you run a function on a physical core or a logical one. Both
will work equally well. (Okay, the latter will be a little slower.) Still, if you are interested in determining the number of
physical cores versus logical cores on your system, then there are several ways to this from R. For example, you can use
the RhpcBLASctl package (link).

# library(RhpcBLASctl) ## Already loaded

get_num_procs() ## No. of all cores (including logical/hyperthreaded)

## [1] 12
get_num_cores() ## No. of physical cores only

## [1] 6

Forking vs Sockets

As I keep saying, it’s now incredibly easy to run parallel programs in R. The truth is that it has actually been easy to do so
for a long time, but the implementation used to vary by operating system. In particular, simple parallel implementations
that worked perfectly well on Linux or Mac didn’t work on Windows (which required a lot more overhead). For example,
take a look at the help documentation for the parallel::mclapply() function, which has been around since 2011. If
you did so, you would see a warning that mclapply() “relies on forking and hence is not available on Windows”.

Now, we clearly didn’t encounter any OS-specific problems when we ran the parallel versions of our motivating examples
above. The same code worked for everyone, including anyone using Windows. Loud booing. What was happening behind
the scenes is that the future packages automatically handled any complications for us. The parallel functions were being
executed in a way that was optimised for each person’s OS and R environment.

But what is “forking” and why does it matter what OS I am using anyway? Those are good questions that relate to the
method of parallelization (i.e. type of cluster) that your system supports. The short version is that there are basically two
ways that code can be parallelized:

• Forking works by cloning your entire R environment to each separate core. This includes your data, loaded pack-
ages, functions, and any other objects in your current session. This is very efficient because you don’t have to worry
about reproducing your “master” environment in each “worker” node. Everything is already linked, which means
that you aren’t duplicating objects in memory. However, forking is not supported on Windows and can also cause
problems in an IDE or GUI like RStudio.6

• Parallel sockets (aka “PSOCKs”) work by launching a new R session in each core. This means that your master
environment has to be copied over and instantiated separately in each parallel node. This requires greater overhead
and causes everything to run slower, since objects will be duplicated across each core. Technically, a PSOCK works
by establishing a network (e.g. as if youwere connected to a remote cluster), but everything is self-contained on your
computer. This approach can be implemented on every system, including Windows, and doesn’t create problems
for IDEs like RStudio.

I’ve summarised the differences between the two approaches in the table below.

Forking PSOCKs

� Fast and memory efficient. × Slower and more memory-intensive (than forking).

× Only available for Unix-based systems. � Works on every operating system, incl. Windows.

× Potentially unstable in an IDE like RStudio. � Fine to use in an IDE like RStudio.
6The reason is that shared GUI elements are being shared across child processes. (See the “GUI/embedded environments” section here.) Combined

with the fact that the shared memory is read only, there is a risk of “cross-contamination” where any modification made to a shared object by one of the
worker nodes can propagates to the system.
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Forking PSOCKs

The general rule of thumb is PSOCKs are safer and more universal than forking. This makes them a good default, even
if they do come with a potential performance/memory penalty. And, indeed, this is exactly what we did by selecting the
plan(multisession) resolution strategy. So, now you know where that choice came from.

At the same time, however, I recommend that you consider forking if it is available to you (i.e. you’re on Linux or Mac)
and you want to maximise performance. In these cases, the solution requires two simple tweaks:

1. Change your resolution plan to plan(multicore), and
2. Run your R script from the terminal using, say, $ Rscript -e 'rmarkdown::render("mydoc.Rmd", "all")' or

$ Rscript myfile.R.

Here’s a very simple illustration, using the same setup as Example 1 from earlier.

plan(multicore) ## NB: Only works on Unix!

tic()
future_ex_mc = future_lapply(1:12, slow_square) %>% bind_rows()
toc(log = TRUE)

## 2.518 sec elapsed

The upshot is that the forking version (i.e. plan(multicore)) is about 1.6× faster than the PSOCK equivalent
(i.e. plan(multisession)). But remember: Caveat emptor.

For more on forks vs PSOCKS, take a look at the relevant section of the future README.

Explicit vs implicit parallelization
Thus far we have only been concerned with explicit parallelization. As in, we explicitly told R to run a particular set of
commands in parallel. But there is another form of implicit parallelization that is equally important to be aware of. In this
case, certain low-level functions and operations are automatically run in parallel regardless of whether we “told” R to do
so or not. Implicit parallelization can make a big difference to performance, but is not the default behaviour in R. So it has
to enabled first (for example, by the package that you’re using). Moreover, combining explicit and implicit parallelization
can cause problems if you don’t take certain precautions. Let’s take a look at where implicit parallelization enters the fray.

BLAS/LAPACK

Did you ever wonder how R and other programming languages perform their calculations? For example, how does R
actually do things like vector addition, or scalar and matrix multiplication? The answer is BLAS (Basic Linear Algebra
Suprograms). BLAS are a collection of low-level routines that provide standard building blocks for performing basic
vector and matrix operations. These routines are then incoporated in related libraries like LAPACK (Linear Algebra
Package), which provide their own routines for solving systems of linear equations and linear least squares, calculating
eigenvalues, etc. In other words, BLAS and LAPACK provide the linear algebra framework that supports virtually all of
statistical and computational programming

R ships with its own BLAS/LAPACK libraries by default. These libraries place a premium on stablility (e.g. common
user experience across operating systems). While the default works well enough, you can get significant speedups by
switching to more optimized libraries such as the Intel Math Kernel Library (MKL) or OpenBLAS. Among other things,
these optimised BLAS libraries support multi-threading. So now you are using all your available computer power to, say,
solve a matrix.

You can use the sessionInfo() command to see which BLAS/LAPACK library you are using. For example, I am using
OpenBLAS on this computer:
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sessionInfo()[c("BLAS", "LAPACK")]

## $BLAS
## [1] "/usr/lib/libopenblas_haswellp-r0.3.13.so"
##
## $LAPACK
## [1] "/usr/lib/libopenblas_haswellp-r0.3.13.so"

Beware resource competition

While this all sounds great — and I certainly recommend taking a look at MKL or OpenBLAS — there is a potential
downside. In particular, you risk competing with yourself for computational resources (i.e. memory) if you mix explicit
and implicit parallel calls. For instance, if you run explicit multicore functions from within R on a system that has been
configured with an optimised BLAS. As Dirk Eddelbuettel succintly puts it in this Stack Overflow thread:

There is one situation youwant to avoid: (1) spreading a task over allN cores and (2) having each corework on
the task using something likeOpenBLASorMKLwith all cores. Because nowyouhave anN byN contention:
each of the N task wants to farm its linear algebra work out to allN cores.

Now, I want to emphasise that this conflict rarely matters in my own experience. I use optimised BLAS libraries and run
explicit parallel calls all the time in my R scripts. Despite this, I have hardly ever run into a problem. Moreover, when
these slowdowns have occured, I’ve found the effect to be relatively modest.7 Still, I have read of cases where the effect
can be quite dramatic (e.g. here) and so I wanted you to be aware of it all the same.

Luckily, there’s also an easy and relatively costless solution: Simply turn off BLAS multi-threading. It turns out this has
a negligible impact on performance, since most of the gains from optimised BLAS are actually coming from improved
math vectorisation, not multi-threading. (See this post for a detailed discussion.) You can turn off BLAS multi-threading
for the current R session via the RhpcBLASctl::blas_set_num_threads() function. For example, I sometimes include
the following line at the top of an R script:

# blas_get_num_procs() ## If you want to find the existing number of BLAS threads
RhpcBLASctl::blas_set_num_threads(1) ## Set BLAS threads to 1 (i.e. turn off multithreading)

Since this is only in effect for the current R session, BLAS multithreading will be restored when I restart R.8

Library source code

Very briefly, I want to point out that implicit parallelization is automatically invoked by many of the external libraries that
we use in R. The good news is that package developers normally take pains to avoid potential resource competition. For
instance, consider the message that data.table greets us with at load time.

library(data.table, warn.conflicts = FALSE)

## data.table 1.13.6 using 6 threads (see ?getDTthreads). Latest news: r-datatable.com

If you follow the suggestion and look at the ?getDTthreads help documentation, you’ll find an informative (and reassur-
ing) discussion of its approach here:

data.table automatically switches to single threaded mode upon fork (the mechanism used by paral-
lel::mclapply and the foreach package). Otherwise, nested parallelism would very likely overload your
CPUs and result inmuch slower execution. As data.table becomesmore parallel internally, we expect explicit
user parallelism to be needed less often…

A final point on this topic, riffing off the quoted text, is that packages like data.table implement their parallel operations at
the source-code level, i.e. in C(++) and other compiled languages. So they are likely to bemore efficient than the equivalent

7The major cost appears to be the unnecessary duplication of objects in memory.
8I could also reinstate the original behaviour in the same session by running blas_set_num_threads(parallel::detectCores()). You can turn

off multithreading as the default mode by altering the configuration file when you first build/install your preferred BLAS library. However, that’s both
complicated and unnecessarily restrictive in my view.
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explicit parallel calls that you might make. It’s not that you can’t combine, say, future and data.table (I do this often). But
you should know that trying to do better than the latter’s default operations may be a fool’s errand.

Miscellaneous
When should I go parallel?

The short answer is that youwant to invoke themulticore optionwhenever you are facedwith a so-called “embarrassingly
parallel” problem. You can click on that link for a longer description, but the key idea is that these computational problems
are easy to break up into smaller chunks. You likely have such a case if the potential code chunks are independent and
do not need to communicate in any way. Classic examples include bootstrapping (since each regression or resampling
iteration is drawn independently) and Markov chain Monte Carlo (i.e. MCMC).

Having said that, there are limitations to the gains that can be had from parallelization. Most obviously, there is the
computational overhead associated with splitting up the problem, tracking the individual nodes, and then bringing ev-
erything back into a single result. This can be regarded as an issue largely affecting shorter and smaller computations. In
other words, the overhead component of the problem tends to diminish in relative size as the overall computation time
increases.

On the opposite end of the spectrum, there is Amdahl’s law (generalised as Gustafson’s law). This formalises the intuitive
idea that there are diminishing returns to parallelization, depending on the proportion of your code that can be run in
parallel. A case in point is Bayesian MCMC routines, which typically include a fixed “burn-in” period regardless of how
many parallel chains are being run in parallel.
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How many cores should I use?

If you look this question up online, you’ll find that most people recommend using detectCores()-1. This advice stems
from the idea that you probably want to reserve one core for other tasks, such as running your web browser or word
processor. While I don’t disagree, I typically use all available cores for my parallel computations. For one thing, I do
most of my heavy computational work in the cloud (i.e. on a server or virtual machine). So keeping some computational
power in reserve doesn’t make sense. Second, when I am working locally, I’ve gotten into the habit of closing all other
applicationswhile a parallel function is running. Yourmileagemay vary, though. (And remember the possible diminishing
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returns brought on by Amdahl’s law). FWIW, calling plan(multisession) or plan(multicore) automatically default
to using all your cores. You can change that by running, say, plan(multisession(workers = detectCores()-1)).

Fault tolerance (error catching, caching, etc.)

In my experience, the worst thing about parallel computation is that it is very sensitive to failure in any one of its nodes.
An especially frustrating example is the tendency of parallel functions to ignore/hide critical errors up until the very end
when they are supposed to return output. (“Oh, so you encountered a critical error several hours ago, but just decided
to continue for fun anyway? Thanks!”) Luckily, all of the defensive programming tools that we practiced in the previous
lecture — catching user errors and caching intermediate results — carry over perfectly to their parallel equivalents. Just
make sure that you use a persistent cache.

Challenge: Prove this to yourself by running a parallel version of the cached iteration that we practiced last time. Specif-
ically, you should recreate the mem_square_verbose() function, which in turn relies on the mem_square_persistent()
function.9 You should then be able to run future_map_dfr(1:10, mem_square_verbose) and it will automatically re-
turn the previously cached results. After that, try future_map_dfr(1:24, mem_square_verbose) and see what happens.

Random number generation

Random number generation (RNG) can become problematic in parallel computations (whether trying to ensure the same
of different RNG across processes). R has various safeguards against this and future automatically handles RNG via the
future.seed argument. We saw an explicit example of this in Example 2 above.

Parallel regression

A number of regression packages in R are optimised to run in parallel. For example, the superb fixest package (link) that
we saw in the lecture on regression analysis will automatically invokemulticore capabilities when fitting high dimensional
fixed effects models. The many Bayesian packages in R are also all capable of — and, indeed, expected to — fit regression
models by running their MCMC chains in parallel. For example, RStan (link). Finally, you may be interested in the
partools package (link), which provides convenient aliases for running a variety of statistical models and algorithms in
parallel.

CPUs vs GPUs

Graphical Processing Units, or GPUs, are specialised chipsets that were originaly built to perform the heavy lifting as-
sociated with rendering graphics. It’s important to realise that not all computers have GPUs. Most laptops come with
so-called integrated graphics, which basically means that the same processor is performing both regular and graphic-
rendering tasks. However, gaming and other high-end laptops (and many desktop computers) include a dedicated GPU
card. For example, the Dell Precision 5530 that I’m writing these lecture notes on has a hybrid graphics setup with two
cards: 1) an integrated Intel GPU (UHD 630) and 2) a discrete NVIDIA Quadro P2000.

Sowhy am I telling you this? Well, it turns out thatGPUs also excel at non-graphic computation tasks. The sameprocessing
power needed to perform the millions of parallel calculations for rendering 3-D games or architectural software, can be
put to use on scientific problems. How exactly this was discovered involves an interesting backstory of supercomputers
being built with Playstations. (Google it.) But the short version is that modern GPUs comprise thousands of cores that can
be run in parallel. Or, as my colleague David Evans once memorably described it to me: “GPUs are basically just really,
really good at doing linear algebra.”

Still, that’s about as much as I want to say about GPUs for now. Installing and maintaining a working GPU setup for
scientific purposes is a much more complex task. (And, frankly, overkill for the vast majority of econometric or data
science needs.) We may revisit the topic when we get to the machine learning section of the course in a few weeks.10 Thus,
and while the general concepts carry over, everything that we’ve covered today is limited to CPUs.

9To clarify: The verbose option simply provides helpful real-time feedback to us. However, the underlying persistent cache location — provided in
this case by mem_square_persistent() — is necessary whenever you want to use a memoised function in the futures framework.

10Advanced machine learning techniques like deep learning are particularly performance-dependent on GPUs.
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Monitoring multicore performance

Bash-compatible shells should comewith the built-in top command,which provides a real-time viewof running processes
and resource consumption. (Pro-tip: Hit “1” to view processes across individual cores and “q” to quit.) An enhanced
alternative that I really like and use all the time is htop, which is available on both Linux and Mac. (Windows users can
install htop on theWSL that we coveredway back in the shell lecture.). It’s entirely up to youwhether youwant to install it.
Your operating system almost certainly provides built-in tools for monitoring processes and resource usage (e.g. System
Monitor). However, I wanted to flag htop before we get to the big data section of the course. We’ll all be connecting to
remote Linux servers at that point and a shell-based (i.e. non-GUI) process monitor will prove very handy for tracking
resource use.

Further resources
• Dirk Eddelbuettel provides the authoritative reference on this topic in his review paper, Parallel Computing With R:
A Brief Review (pre-print).

• Beyond Dirk’s article, I’d argue that the starting point for further reading should be the future vignettes (one, two,
three, four, five). There’s a lot in there, so feel free to pick and choose.

• Similarly, the furrr package vignette is very informative (and concise).
• The parallel package vignette provides a very good overview, not only its own purpose, but of parallel programming

in general. Particular attention is paid to the steps needed to ensure a stable R environment (e.g. across operating
systems).

• Finally, there a number of resources online that detail older parallel programming methods in R (foreach, mclap-
ply, parLapply snow, etc.). While these methods have clearly been superseded by the future package ecosystem in
my mind, there is still a lot of valuable information to be gleaned from understanding them. Two of my favourite
resources in this regard are: How-to go parallel in R (Max Gordon) and Beyond Single-Core R (Jonathan Dursi).
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