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Sign-up and software requirements
Sign-up

We’re going to be downloading economic data from the FRED API. This will require that you first create a user account
and then register a personal API key.

External software

Today I'll be using JSONView, a browser extension that renders JSON output nicely in Chrome and Firefox. (Not required,
but recommended.)

R packages

« New: jsonlite, httr, listviewer, usethis, fredr
« Already used: tidyverse, lubridate, hrbrthemes, janitor

Here’s a convenient way to install (if necessary) and load all of the above packages.

#Ht Load and install the packages that we'll be using today

if (!require("pacman")) install.packages("pacman")

pacman::p_load(tidyverse, httr, lubridate, hrbrthemes, janitor, jsonlite, fredr,
listviewer, usethis)

#Ht My preferred ggplot2 plotting theme (optional)

theme_set(hrbrthemes :: theme_ipsum())

Recap from last time

During the last lecture, we saw that websites and web applications fall into two categories: 1) Server-side and 2) Client-side.
We then practiced scraping data that falls into the first category — i.e. rendered server-side — using the rvest package.
This technique focuses on CSS selectors (with help from SelectorGadget) and HTML tags. We also saw that webscraping


https://github.com/uo-ec607/lectures
https://research.stlouisfed.org/useraccount/apikey
https://research.stlouisfed.org/useraccount/apikey
https://jsonview.com/
http://selectorgadget.com/

often involves as much art as science. The plethora of CSS options and the flexibility of HTML itself means that steps
which work perfectly well on one website can easily fail on another website.

Today we focus on the second category: Scraping web data that is rendered client-side. The good news is that, when
available, this approach typically makes it much easier to scrape data from the web. The downside is that, again, it can
involve as much art as it does science. Moreover, as | emphasised last time, just because because we can scrape data,
doesn’t mean that we should (i.e. ethical, legal and other considerations). These admonishments aside, let’s proceed...

Client-side, APIs, and API endpoints

Recall that websites or applications that are built using a client-side framework typically involve something like the
following steps:

+ You visit a URL that contains a template of static content (HTML tables, CSS, etc.). This template itself doesn’t
contain any data.

« However, in the process of opening the URL, your browser sends a request to the host server.

« If your request if valid, then the server issues a response that fetches the necessary data for you and renders the page
dynamically in your browser.

+ The page that you actually see in your browser is thus a mix of static content and dynamic information that is
rendered by your browser (i.e. the “client”).

All of this requesting, responding and rendering takes places through the host application’s API (or Application Program
Interface). Time for a student presentation to go over APIs in more depth...

Student presentation: APIs

If you're new to APIs or reading this after the fact, then I recommend this excellent resource from Zapier: An Introduction
to APIs. It’s fairly in-depth, but you don’t need to work through the whole thing to get the gist. The summary version is
that an API is really just a collection of rules and methods that allow different software applications to interact and share
information. This includes not only web servers and browsers, but also software packages like the R libraries we’ve been
using.! Key concepts include:

«+ Server: A powerful computer that runs an API.

« Client: A program that exchanges data with a server through an APL

« Protocol: The “etiquette” underlying how computers talk to each other (e.g. HT'TP).

« Methods: The “verbs” that clients use to talk with a server. The main one that we’ll be using is GET (i.e. ask a server
to retrieve information), but other common methods are POST, PUT and DELETE.

« Requests: What the client asks of the server (see Methods above).

« Response: The server’s response. This includes a Status Code (e.g. “404” if not found, or “200” if successful), a Header
(i.e. meta-information about the reponse), and a Body (i.e the actual content that we're interested in).

- Etc.

A bit more about API endpoints

A key point in all of this is that, in the case of web APIs, we can access information directly from the API database if we can
specify the correct URL(s). These URLs are known as an API endpoints.

API endpoints are in many ways similar to the normal website URLSs that we're all used to visiting. For starters, you can
navigate to them in your web browser. However, whereas normal websites display information in rich HTML content —
pictures, cat videos, nice formatting, etc. — an API endpoint is much less visually appealing. Navigate your browser to
an API endpoint and you'll just see a load of seemingly unformatted text. In truth, what you're really seeing is (probably)
either JSON (JavaScript Object Notation) or XML (Extensible Markup Language).

You don’t need to worry too much about the syntax of JSON and XML. The important thing is that the object in your
browser — that load of seemingly unformatted text — is actually very precisely structured and formatted. Moreover, it

Fun fact: A number of R packages that we'll be using later in this course (e.g. leaflet, plotly, etc.) are really just a set of wrapper functions that
interact with the underlying APIs and convert your R code into some other language (e.g. JavaScript).


https://zapier.com/learn/apis/
https://zapier.com/learn/apis/
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML

contains valuable information that we can easily read into R (or Python, Julia, etc.) We just need to know the right API
endpoint for the data that we want.

Let’s practice doing this through a few example applications. I'll start with the simplest case (no API key required, explicit
API endpoint) and then work through some more complicated examples.

Application 1: Trees of New York City

NYC Open Data is a pretty amazing initiative. Its mission is to “make the wealth of public data generated by various New
York City agencies and other City organizations available for public use”. You can get data on everything from arrest data,
to the location of wi-fi hotspots, to city job postings, to homeless population counts, to dog licenses, to a directory of toilets
in public parks... The list goes on. I highly encourage you to explore in your own time, but we're going to do something
“earthy” for this first application: Download a sample of tree data from the 2015 NYC Street Tree Census.

I wanted to begin with an example from NYC Open Data, because you don’t need to set up an API key in advance.? All
you need to do is complete the following steps:

« Open the web page in your browser (if you haven't already done so).

+ You should immediately see the API tab. Click on it.

« Copy the API endpoint that appears in the popup box.

« Optional: Paste that endpoint into a new tab in your browser. You'll see a bunch of JSON text, which you can render
nicely using the JSONView browser extension that we installed earlier.

Here’s a GIF of me completing these steps:
#Ht Sorry, this GIF is only available in the the HTML version of the notes.

Now that we’ve located the API endpoint, let’s read the data into R. We’ll do so using the fromJSON() function from the
excellent jsonlite package (link). This will automatically coerce the JSON array into a regular R data frame. However, I'll
go that little bit further and convert it into a tibble, since the output is nicer to work with.

# library(jsonlite) ## Already loaded

nyc_trees =
fromJSON("https://data.cityofnewyork.us/resource/nwxe-4ae8.json") %>%
as_tibble()

nyc_trees

#H # A tibble: 1,000 x 45

HHt tree_id block_id created_at tree_dbh stump_diam curb_loc status health
#Ht <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#H 1 180683 348711 2015-08-2~ 3 0 OnCurb Alive Fair
#H 2 200540 315986 2015-09-0~ 21 0 OnCurb Alive Fair
#HH 3 204026 218365 2015-09-0~ 3 0 OnCurb Alive Good
H 4 204337 217969 2015-09-0~ 10 0 OnCurb  Alive Good
# 5 189565 223043 2015-08-3~ 21 0 OnCurb Alive Good
#H 6 190422 106099 2015-08-3~ 11 0 OnCurb Alive Good
#H 7 190426 106099 2015-08-3~ 11 0 OnCurb Alive Good
#HH 8 208649 103940 2015-09-0~ 9 0 OnCurb Alive Good
#H 9 209610 407443 2015-09-0~ 6 0 OnCurb Alive Good
#H 10 192755 207508 2015-08-3~ 21 0 OffsetF~ Alive Fair
HH # with 990 more rows, and 37 more variables: spc_latin <chr>,

o spc_common <chr>, steward <chr>, guards <chr>, sidewalk <chr>,

HH o user_type <chr>, problems <chr>, root_stone <chr>, root_grate <chr>,
Ho# root_other <chr>, trunk_wire <chr>, trnk_light <chr>, trnk_other <chr>,
HH # brch_light <chr>, brch_shoe <chr>, brch_other <chr>, address <chr>,

2Truth be told: To avoid rate limits — i.e. throttling the number of requests that you can make per hour — it’s best to sign up for an NYC Open Data
app token. We're only going to make one or two requests here, though so we should be fine.


https://opendata.cityofnewyork.us/
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh
https://data.cityofnewyork.us/resource/nwxe-4ae8.json
https://cran.r-project.org/web/packages/jsonlite/index.html
https://data.cityofnewyork.us/profile/app_tokens

o zipcode <chr>, zip_city <chr>, cb_num <chr>, borocode <chr>,

H # boroname <chr>, cncldist <chr>, st_assem <chr>, st_senate <chr>, nta <chr>,
HH # nta_name <chr>, boro_ct <chr>, state <chr>, latitude <chr>,

#H #  longitude <chr>, x_sp <chr>, y_sp <chr>, council_district <chr>,

HH # census_tract <chr>, bin <chr>, bbl <chr>

Aside on limits: Note that the full census dataset contains nearly 700,000 individual trees. However, we only downloaded
a tiny sample of that, since the API defaults to a limit of 1,000 rows. I don’t care to access the full dataset here, since I just
want to illustrate some basic concepts. Nonetheless, if you were so inclined and read the docs, you'd see that you can
override this default by adding ?$1imit=LIMIT to the API endpoint. For example, to read in only the first five rows, you
could use:

#Ht Not run

fromJSON("https://data.cityofnewyork.us/resource/nwxe-4ae8.json?$limit=5")

Getting back on track, let’s plot our tree data just to show it worked. One minor thing I want to point out is that json-
lite:: fromJSON() automatically coerces everything into a character, so we’'ll also need to convert some columns to
numeric before we plot.
nyc_trees %>%
select(longitude, latitude, stump_diam, spc_common, spc_latin, tree_id) %>%
mutate_at(vars(longitude:stump_diam), as.numeric) %>%

ggplot(aes(x=longitude, y=latitude, stump_diam)) +
geom_point( 0.5) +
scale_size_continuous( "Stump diameter") +
labs(
"Longitude", "Latitude",

"Sample of New York City trees",
"Source: NYC Open Data"

)
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Not too bad. This would probably be more fun / impressive with an actual map of New York behind it. We'll save that for
the spatial lecture that’s coming up later in the course, though.


https://dev.socrata.com/docs/queries/limit.html

Again,  want to remind you that our first application didn’t require prior registration on the Open Data NYC website, or
creation of an API key. This is atypical. Most API interfaces will only let you access and download data after you have
registered an API key with them. This is especially true if you want to access an API linked to a federal agency or institution
(Census, BEA, etc.). So let’s work through an application where an API key is required...

Application 2: FRED data

Our second application will involve downloading data from the FRED API. You will need to register an API key if you
want to follow along with my steps, so please do so first before continuing.

As nearly every economist could tell you, FRED is a database maintained by the Federal Reserve Bank of St Louis. You
know, the one that let’s you plot cool interactive charts like this one of US GNP since 1929.

#Ht Sorry, this interactive chart is only available in the the HTML version of the notes.

For this second example application, I'm going to show you how to download the data underlying the above chart using
the FRED API. In fact, I'll go one better. First, I'll show you how to download it yourself, so that you get an understanding
of what’s happening underneath the hood. Then, I'll direct you to a package that does all of the API work for you.

Do it yourself

Aswith all APIs, a good place to start is the FRED API developer docs. If you read through these, you'd see that the endpoint
path we're interested in is series/observations. This endpoint “gets the observations or data values for an economic data
series”. The endpoint documentation gives a more in-depth discussion, including the various parameters that it accepts.’
However, the parameters that we'll be focused on here are simply:

. file_type: “json” (Not required, but our preferred type of output.)
« series_id: “GNPCA” (Required. The data series that we want.)
« api_key: “YOUR_API_KEY” (Required. Go and fetch/copy your key now.)

Let’s combine these parameters with the endpoint path to view the data directly in our browser. Head over to
https://api.stlouisfed.org/fred/series/observations?series_id=GNPCA&api_key=YOUR_API_KEY&file_type=json,
replacing “YOUR_API_KEY” with your actual key. You should see something like the following:

& © (5)) hLtps://‘api.stlouisfed.org/ﬁed,"ser'\es/observahons?syries,id:GNPCA&dp\,key_&HL@JVPP:JSO”

{

realtime_start: "2019-01-30",
realtime_end: "2019-01-30",
observation_start: "1600-01-01",
observation_end: "9999-12-31",
units: "lin",
output_type: 1,
file_type: "json",
order_by: "observation date",
sort_order: "
count: 89,
offset: 0,
limit: 100000,

- observations: [

asc",

= 4
realtime_start: "2019-01-30",
realtime_end: "2019-01-30",
date: "1929-01-01",
value: "1120.076"
1
ol
realtime_start: "2019-01-30",
realtime_end: "2019-01-30",
date: "1930-01-01",
value: "1025.091"
1
=

realtime_start: "2019-01-30",

ranl+ima and:. "I010 A1 200

3Think of API parameters the same way that you think about function arguments. They are valid inputs (instructions) that modify the response to an
API request.
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https://research.stlouisfed.org/docs/api/fred/
https://research.stlouisfed.org/docs/api/fred/series_observations.html
https://api.stlouisfed.org/fred/series/observations?series_id=GNPCA&api_key=YOUR_API_KEY&file_type=json

At this point you're probably tempted to read the JSON object directly into your R environment using the json-
lite:: readJSON() function. And this will work. However, that’s not what we’re going to here. Rather, we're going to
go through the httr package (link). Why? Well, basically because httr comes with a variety of features that allow us to
interact more flexibly and securely with web APIs.

Let’s start by defining some convenience variables such as the endpoint path and the parameters (which we'll store in a
list).
endpoint = "series/observations"
params = list(
"YOUR_FRED_KEY", ## Change to your own key
"Jjson",
"GNPCA"
)

Next, we'll use the httr :: GET() function to request (i.e. download) the data. I'll assign this to an object called fred.
# library(httr) ## Already loaded above

fred =
httr:: GET(
"https://api.stlouisfed.org/", ## Base URL
paste@("fred/", endpoint), #Ht The API endpoint
params #Ht Our parameter list
)

Take a second to print the fred object in your console. What you'll see is pretty cool; i.e. it’s the actual API response,
including the Status Code and Content. Something like:

## Response [https://api.stlouisfed.org/fred/series/observations?api_key=YOUR_API_KEY&file_type=json&series_id=Gl
H Date: 2019-02-01 00:06

HH Status: 200

#Ht  Content-Type: application/json; charset=UTF-8

#H  Size: 9.09 kB

To actually extract the content (i.e. data) from of this response, I'll use the httr:: content() function. Moreover, since
we know that this content is a JSON array, we can again convert it into an R object using jsonlite :: fromJSON().

fred =
fred %>%
httr::content("text") %>% i Extract the reponse content (i.e. text)
jsonlite:: fromJSON() #t Convert from JSON to R object

Ht What type of object did we get?
typeof(fred)

#H [1] "list"

It turns that the previous step has yielded a list object in R.* so now we need to inspect this list to better understand its
structure before extracting the information that we care about (and coerce it to a data frame.) I'd use the base View()
function to do this in an interactive r session. but that won’t work as well for these lecture notes. Instead, I'll use the
listviewer:: jsonedit() function to create an interactive widget that renders nicely in knitted r markdown documents.

# View(fred) ## What I'd use in an interactive R session

“4complex nested lists are the law of the land when it comes to json information. don’t worry too much about this now; just rest assured that r is well
suited to handling these kinds of objects. it’s one reason why r and json play so well together. we’ll see more examples later in the course when we start
working with programming and spatial data.


https://httr.r-lib.org/

## library(listviewer) ## Already loaded
jsonedit(fred, mode = "view") ## Better for RMarkdown documents

=

Luckily, this particular list object isn’t too complicated. We can see that what we're really interested in, is the
fred$observations sub-element. I'll use purrr :: pluck() to extract this element (there are various other ways to do
this) and then coerce it to a tibble.

fred =
fred %>%
purrr:: pluck("observations") %>% ## Extract the "$observations” list element
# .$observations %>% ## I could also have used this
# magrittr::extract("observations") %>% ## Or this
as_tibble() ## Just for nice formatting
fred

#H # A tibble: 91 x 4

HHt realtime_start realtime_end date value

HH <chr> <chr> <chr> <chr>

#H 1 2021-02-10 2021-02-10 1929-01-01 1120.076
#H 2 2021-02-10 2021-02-10 1930-01-01 1025.091
#H 3 2021-02-10 2021-02-10 1931-01-01 958.378

#H 4 2021-02-10 2021-02-10 1932-01-01 834.291

#H 5 2021-02-10 2021-02-10 1933-01-01 823.156

#H 6 2021-02-10 2021-02-10 1934-01-01 911.019

#H 7 2021-02-10 2021-02-10 1935-01-01 992.537

#H 8 2021-02-10 2021-02-10 1936-01-01 1118.944
#H 9 2021-02-10 2021-02-10 1937-01-01 1177.572
#H 10 2021-02-10 2021-02-10 1938-01-01 1138.989
#H # ... with 81 more rows

Okay! We've finally got our data and are nearly ready for some plotting. Recall that jsonlite :: fromJSON( ) automatically
converts everything to characters, so I'll quickly change some variables to dates (using lubridate :: ymd()) and numeric.

# library(lubridate) ## Already loaded above

fred =
fred %>%
mutate(across(realtime_start:date, ymd)) %>%
mutate(value = as.numeric(value))

Let’s plot this sucker.

fred %>%
ggplot(aes(date, value)) +
geom_line() +
scale_y_continuous(labels = scales::comma) +
labs(
x="Date", y="2012 USD (Billions)",
title="US Real Gross National Product", caption="Source: FRED"

)
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Aside: Safely store and use API keys as environment variables

In the above example, I assumed that you would just replace the “YOUR_FRED_KEY” holder text with your actual API
key. This is obviously not very secure or scalable, since it means that you can’t share your R script without giving away
your key.” Luckily, there’s an easy way to safely store and use sensitive information like API keys or passwords: Simply
save them as an R environment variables. There are two, closely related approaches:

1. Set an environment variable for the current R session only.
2. Set an environment variable that persists across R sessions.

Let’s briefly review each in turn.

1) Set an environment variable for the current R session only Defining an environment variable for the current R
session is very straightforward. Simply use the base Sys.setenv() function. For example:

iHt Set new environment variable called MY_API_KEY. Current session only.
Sys.setenv( "abcdefghijklmnopqrstuvwxyz0123456789")

Once this is done, you can then safely assign your key to an object — including within an R Markdown document that
you're going to knit and share — using the Sys.getenv() function. For example:

tHt Assign the environment variable to an R object
my_api_key = Sys.getenv("MY_API_KEY")

#Ht Print it out just to show that it worked
my_api_key

#t [1] "abcdefghijklmnopqrstuvwxyz0123456789"

Important: While this approach is very simple, note that in practice the Sys.setenv() part should only be run directly
in your R console. Never include code chunks with sensitive Sys.setenv() calls in an R Markdown file or other shared
documents.® That would entirely defeat the purpose! Apart from the annoyance of having to manually set my API key

5The same is true for compiled R Markdown documents like these lecture notes.
6Since the new R environment variable is defined for the duration of the current session, R Markdown will have access to this variable irrespective
of whether it was defined in the R Markdown script or not.


https://stat.ethz.ch/R-manual/R-devel/library/base/html/EnvVar.html

each time [ start a new R session, this is one reason that I prefer the next approach of persisting environment variables
across sessions...

2) Set an environment variable that persist across R sessions  The trick to setting an R environment variable that is
available across sessions is to add it to a special file called ~/.Renviron. This is a text file that lives on your home directory
— note the ~/ path — which R automatically reads upon startup. Because ~/.Renviron is just a text file, you can edit it
with whatever is your preferred text editor. However, you may need to create it first if it doesn’t exist. A convenient way
to do all of this from RStudio is with the usethis :: edit_r_environ() function. You will need to run the next few lines
interactively:

tHt Open your .Renviron file. Here we can add API keys that persist across R sessions.
usethis::edit_r_environ()

This will open up your ~/.Renviron file in a new RStudio window, which you can then modify as needed. As an example,
let’s say that you want to add your FRED API key as an environment variable that persists across sessions. You can do this
by simply adding a line like the below to your ~/.Renviron file and saving.”

FRED_API_KEY="abcdefghijklmnopqrstuvwxyz0123456789" ## Replace with your actual key

Once you have saved your changes, you'll need to refresh so that this new environment variable is available in the current
session. You could also restart R, but that’s overkill.

tHt Optional: Refresh your .Renviron file.
readRenviron("~/.Renviron") ## Only necessary if you are reading in a newly added R environment variable

Challenge: Once you've refreshed your ~/.Renviron file, try to re-download the FRED data from earlier. This time call
your FRED API key directly as an environment variable in your parameter list using Sys.getenv() like this:

params = list(
Sys.getenv("FRED_API_KEY"), ## Get API directly and safely from the stored environment variable
"json",
"GNPCA"
)

We're going to be revisiting (and setting) environment variables once we get to the cloud computation part of the course.
So please make sure that you've understood this section and that your new FRED API key works.

Use a package

One of the great features about the R (and data science community in general) is that someone has probably written a
package that does all the heavy API lifting for you. We'll come across many examples during the remainder of this course,
but for the moment I want to flag the fredr package (link). Take a look at the “Get started” page to see how you could
access the same GDP data as above, but this time going through a package.

Application 3: World rugby rankings

Our final application will involve a more challenging case where the API endpoint is hidden from view. In particular, 'm
going to show you how to access data on World Rugby rankings. Because — real talk — what’s more important than
teaching Americans about rugby?

Disclaimer: World Rugby’s Terms #¢ Conditions permits data downloading for own non-commerical use. It seems reasonable
to me that these lecture notes fall under this use category.® None of the methods presented below should be construed as an
endorsement of data acquisition and use that violates these terms. Again: Just because you can scrape something, doesn’t mean
you should.

71 suggest calling it something that’s easy to remember like “FRED_API_KEY”, but as you wish.
81f you're reading this from World Rugby and disagree, please contact me. In my defence, I am still awaiting a reply to my initial email confirming
my interpretation of your T&Cs...


http://sboysel.github.io/fredr/index.html
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Start by taking a look at the complicated structure of the website in a live session. Pay attention to the various tables and
other interactive elements like calendars. Now take a minute or two for a quick challenge: Try to scrape the full country
rankings using the rvest + CSS selectors approach that we practiced last time...

If you're anything like me, you would have struggled to scrape the desired information using the rvest + CSS selectors
approach. Even if you managed to extract some kind of information, you're likely only getting a subset of what you wanted.
(For example, just the column names, or the first ten rows before the “VIEW MORE RANKINGS” button). And we haven'’t
even considered trying to get information from a different date.’

Locating the hidden API endpoint

Fortunately, there’s a better way: Access the full database of rankings through the API. First we have to find the endpoint,
though. Here’s a step-by-step guide of how to that that. It’s fairly tedious, but pretty intuitive once you get the hang of it.
You can just skip to the GIF below if you would rather see what I did instead of reading through all the steps.

- Start by inspecting the page. (Ctr+Shift+I in Chrome. Ctrl+Shift+Q in Firefox.)

+ Head to the Network tab at the top of the inspect element panel.

« Click on the XHR button.'°

+ Refresh the page (Ctrl+R). This will allow us to see all the web traffic coming to and from the page in our inspect
panel.

« Our task now is to scroll these different traffic links and see which one contains the information that we're after.

« The top traffic link item references a URL called https://cmsapi.pulselive.com/rugby/rankings/mru?language=en&client=pulse.
Hmmm. “API” you say? “Rankings” you say? Sounds promising...

« Click on this item and open up the Preview tab.

« In this case, we can see what looks to be the first row of the rankings table (“New Zealand’, etc.)

« To make sure, you can grab that https://cmsapi.pulselive.com/rugby/rankings/mru?language=en&client=pulse,
and paste it into our browser (using the JSONView plugin) from before.

Sweet. Looks like we've located our API endpoint. As promised, here’s GIF of me walking through these steps in my
browser:

#Ht Sorry, this GIF is only available in the the HTML version of the notes.

Pulling the data into R

Let’s pull the data from the API endpoint into R. Again, I'll be using jsonlite :: readJSON() function.

endpoint = "https://cmsapi.pulselive.com/rugby/rankings/mru?language=en&client=pulse"
rugby = fromJSON(endpoint)
str(rugby)

#H List of 3

#H $ label : chr "Mens Rugby Union"

#H $ entries :'data.frame': 105 obs. of 6 variables:

Ht ..$ team :'data.frame': 105 obs. of b5 variables:

HH ..$ id : int [1:105] 39 37 34 42 36 38 35 33 40 49

1 ..$ altid : logi [1:105] NA NA NA NA NA NA

HHt ..$ name : chr [1:105] "South Africa" "New Zealand" "England" "France"

°Note that the URL doesn’t change even when we select a different date on the calendar.
19X HR stands for XMLHttpRequest and is the type of request used to fetch XML or JSON data.
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Ht ..$ abbreviation: chr [1:105] "RSA" "NZL" "ENG" "FRA"
HHt ..$ annotations : logi [1:105] NA NA NA NA NA NA

Ht ..$ matches :int [1:105] 212 226 214 209 206 233 200 223 190 174
H ..$ pts : num [1:105] 94.2 89 87.5 85.3 83.4

HH ..$ pos : int [1:105] 123 456 7 8 9 10

Ht ..$ previousPts: num [1:105] 94.2 89 89.5 85.3 84.7

HHt ..$ previousPos: int [1:105] 1 3 2 456 7 9 8 10

#t ¢ effective:lList of 3

Ht ..$ millis : num 1.61le+12

Ht ..$ gmtoffset: num 0

H ..$ label : chr "2021-02-08"

We have a nested list, where what looks to be the main element of interest, $entries, is itself a list.!! Let’s extract the
$entries element and have a look at its structure. Again, I'd just use the base View() base in an interactive R session.
Here 'm using listviewer :: jsonedit() because it plays nicely with R Markdown documents.

# str(rugby$entries) ## Base option
listviewer:: jsonedit(rugby, "view"

£ e E—

For completeness, let’s take a peak at the rugby$entries$team data frame to confirm that it has information that is useful
to us.

head(rugby$entries$team)

Ht id altId name abbreviation annotations
H 1 39 NA South Africa RSA NA
# 2 37 NA New Zealand NZL NA
#H 3 34 NA England ENG NA
HH 4 42 NA France FRA NA
#H 5 36 NA Ireland IRE NA
H 6 38 NA Australia AUS NA

Okay, a clearer picture is starting to emerge. It looks like we can just bind the columns of the rugby$entries$team
data frame directly to the other elements of the parent $team “data frame” (actually: “list”). Let’s do that using
dplyr::bind_cols() and then clean things up a bit. I'm going to call the resulting data frame rankings.

# library(janitor) ## Already loaded above

rankings =
bind_cols(
rugby$entries$team,
rugby$entries %>% select(matches:previousPos)
) %>%
clean_names() %>%
select(-c(id, alt_id, annotations)) %>% ## These columns aren't adding much of interest
select(pos, pts, everything()) %>% #t Reorder remaining columns
as_tibble() ## "Enhanced" tidyverse version of a data frame
rankings

UT know that R says rugby$entries is a data.frame, but we can tell from the str() call that it follows a list structure. In particular, the
rugby$entries$team sub-element is a itself data frame.

11



#H # A tibble: 105 x 7

Ht pos pts name abbreviation matches previous_pts previous_pos
Ht <int> <dbl> <chr> <chr> <int> <db1> <int>
#Ho1 1 94.2 South Africa RSA 212 94.2

Ho2 2 89.0 New Zealand NZL 226 89.0 3
#H 3 3 87.5 England ENG 214 89.5 2
H 4 4 85.3 France FRA 209 85.3 4
#H 5 5 83.4 Ireland IRE 206 84.7 5
H 6 6 83.1 Australia AUS 233 83.1 6
o7 7 82.8 Scotland Sco 200 80.8 7
#H 8 8 80.6 Wales WAL 223 79.4 9
#H 9 9 80.3 Argentina ARG 190 80.3 8
#H 10 10 79.3 Japan JPN 174 79.3 10
#H # ... with 95 more rows

BONUS: Get and plot the rankings history

NOTE: This bonus section involves some programming and loops. I know that we haven’t gotten to the programming section of
the course, so don’t worry about the specifics of the next few code chunks. I'll try to comment my code quite explicitly, but I mostly
want you to focus on the big picture.

The above table looks great, except for the fact that it’s just a single snapshot of the most recent rankings. We are probably
more interested in looking back at changes in the ratings over time.

But how to do this? Well, in the spirit of art-vs-science, let’s open up the Inspect window of the rankings page again and
start exploring. What happens if we click on the calendar element, say, change the year to “2018” and month to “April”?
(Do this yourself.)

This looks promising! Essentially, we get the same API endpoint that we saw previously, but now appended with a date,
https://cmsapi.pulselive.com/rugby/rankings/mru?date=2018-05-01&client=pulse. If you were to continue along
in this manner — clicking on the website calendar and looking for XHR traffic — you would soon realise that these date
suffixes follow a predictable pattern: They are spaced out a week apart and always fall on a Monday. In other words, World
Rugby updates its international rankings table weekly and publishes the results on Mondays.

We now have enough information to write a function that will loop over a set of dates and pull data from the relevant API
endpoint. To start, we need a vector of valid dates to loop over. I'm going to use various functions from the lubridate
package to help with this. Note that I'm only to extract a few data points — one observation a year for the last decade or
so — since I only want to demonstrate the principle. No need to hammer the host server. (More on that below.)

tHt We'll look at rankings around Jan 1st each year. I'll use 2004 as an
#Ht arbitrary start year and then proceed until the present year.

start_date = ymd("2004-01-01")
end_date = floor_date(today(), "years")
dates = seq(start_date, end_date, "years")

Ht Get the nearest Monday to Jan 1st to coincide with rankings release dates.

dates = floor_date(dates, "week", getOption("lubridate.week.start", 1))
dates

#H [1] "2003-12-29" "2004-12-27" "2005-12-26" "2007-01-01" "2007-12-31"

#H [6] "2008-12-29" "2009-12-28" "2010-12-27" "2011-12-26" "2012-12-31"

#H [11] "2013-12-30" "2014-12-29" "2015-12-28" "2016-12-26" "2018-01-01"

#H [16] "2018-12-31" "2019-12-30" "2020-12-28"

Next, I'll write out a function that I'll call rugby_scrape. This function will take a single argument: a date that it will
use to construct a new API endpoint during each iteration. Beyond that, it will pretty do much exactly the same things
that we did in our previous, manual data scrape. The only other difference is that it will wait three seconds after running
(i.e. Sys.sleep(3)). 'm adding this final line to avoid hammering the server with instantaneous requests when we put
everything into a loop.
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iHt First remove our existing variables. This is not really necessary, since R is smart enough
tHt to distinguish named objects in functions from named objects in our global environment.
#H But I want to emphasise that we're creating new data here and avoid any confusion.

rm(rugby, rankings, endpoint)

#Ht Now, create the function. I'll call it "rugby_scrape".
rugby_scrape =
function(x) {

endpoint = paste@("https://cmsapi.pulselive.com/rugby/rankings/mru?date=", x, "&client=pulse")

rugby = fromJSON(endpoint)
rankings =
bind_cols(
rugby$entries$team,
rugby$entries %>% select(matches:previousPos)
) %>%
clean_names() %>%

mutate(date = x) %>% ## New column to keep track of the date
select(-c(id, alt_id, annotations)) %>% ## These columns aren't adding much of interest

select(date, pos, pts, everything()) %>% ## Reorder remaining columns

as_tibble() ## "Enhanced" tidyverse version of a data frame
Sys.sleep(3) i Be nice!
return(rankings)

}

Finally, we can now iterate (i.e. loop) over our dates vector, by plugging the values sequentially into our rugby_scrape
function. There are a variety of ways to iterate in R, but I'm going to use an lapply() call below.!> We'll then bind
everything into a single data frame using dplyr :: bind_rows() and name the resulting object rankings_history.

rankings_history =
lapply(dates, rugby_scrape) %>% i Run the iteration

bind_rows() ## Bind the resulting list of data frames into a single data frame

rankings_history

## # A tibble: 1,779 x 8

Ht date pos pts name abbreviation matches previous_pts previous_pos
Ht <date> <int> <dbl> <chr> <chr> <int> <db1> <int>
#H 1 2003-12-29 1 94.0 England ENG 17 92.1 1
#HW 2 2003-12-29 2 90.1 New Ze~ NZL 17 88.2 3
#H 3 2003-12-29 3 86.6 Austra~ AUS 17 88.4 2
#H 4 2003-12-29 4 82.7 France FRA 17 84.7 4
# 5 2003-12-29 5 81.2 South ~ RSA 15 81.2 5
# 6 2003-12-29 6 80.5 Ireland IRE 15 80.5 6
#H 7 2003-12-29 7 78.0 Argent~ ARG 14 78.0 7
#H 8 2003-12-29 8 76.9 Wales WAL 15 76.9 8
#H 9 2003-12-29 9 76.4 Scotla~ SCO 15 76.4 9
# 10 2003-12-29 10 73.5 Samoa SAM 14 73.5 10
#H # ... with 1,769 more rows

Let’s review what we just did:

« We created a vector of dates — creatively called dates — with observations evenly spaced (about) a year apart,

falling on the Monday closest to Jan 1st for that year.

+ We then iterated (i.e. looped) over these dates using a function, rugby_scrape, which downloaded and cleaned data

from the relevant API endpoint.

12 Again, don’t worry too much about this now. We'll cover iteration and programming in more depth in a later lecture.
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« At the end of each iteration, we told R to wait a few seconds before executing the next step. Remember that R can
execute these steps much, much quicker than we could ever type them manually. It probably doesn’t matter for this
example, but you can easily “overwhelm” a host server by hammering it with a loop of automated requests. (Or, just
as likely: They have safeguards against this type of behaviour and will start denying your requests as a suspected
malicious attack.) As ever, the “be nice” motto holds sway when scraping web data.

« Note that each run of our iteration will have produced a separate data frame, which lapply() by default appends
into a list. We used dplyr :: bind_rows() to bid these separate data frames into a single data frame.

Okay! Let’s plot the data and highlight a select few countries in the process.

teams = c("NzZL", "RSA", "ENG", "JPN")
team_cols = c("NzZL"="black", "RSA"="#4DAF4A", "ENG"="#377EB8", "IJPN" = "red")

rankings_history %>%

ggplot(aes(x=date, pts, abbreviation)) +
geom_Lline( "grey") +
geom_line(
rankings_history %>% filter(abbreviation %in% teams),
aes( fct_reorder2(abbreviation, date, pts)),
1
) +
scale_color_manual( team_cols) +
labs(
"Date", "Points",
"International rugby rankings", "Source: World Rugby"
) +
theme( element_blank())
International rugby rankings
« 100
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o
o
75
=== RSA
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50 — NZL
= JPN
25
2005 2010 2015 2020

Date

Source: World Rugby

New Zealand’s extended dominance in the global game is extraordinary, especially given its tiny population size. They
truly do have a legitimate claim to being the greatest international team in the history of professional sport.!* OTOH,
South African rugby supporters can finally (finally) rejoice after a long dry spell. Bring ’er home, Siya. Bing ’er home.

13Obligatory link to the best ever haka.
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https://www.dailytelegraph.com.au/sport/rugby/are-the-all-blacks-the-greatest-international-team-in-the-history-of-sport/news-story/f61ad2d65623a9586929bbfba386b157
https://www.youtube.com/watch?v=BFNCpzGnTTs

#Ht Sorry, this video is only available in the the HTML version of the notes.

Summary

An API is a set of rules and methods that allow one computer or program (e.g. host server) to talk to another
(e.g. client or browser).
We can access information through an API directly by specifying a valid API endpoint.

— The API endpoint for most web-based applications will be a URL with either JSON or XML content.
Some APIs don'’t require an access key or token, but most do. You can add this key as a parameter to the API
endpoint.
Downloading content from an API endpoint to our local computer (i.e. R environment) can be done in a variety of
ways.

- E.g. jsonlite::readJSON() to read the the JSON array directly, or httr :: GET() to download the entire

response, or installing a package that does the job for us.

Next lecture: Regression analysis in R. (The start of the analysis and programming section of the course.)

Further resources and exercises

Here is a short, live video stream that I did for scraping traffic fatality data from LA’s Open Data portal. As I mention
in the video, this covers very similar ground to today’s lecture. But I do expand a bit on using API parameters to
query (i.e. wrangle and summarise) data directly up on the host server before scraping it.

Tyler Clavelle has written several cool blog posts on interacting with APIs through R. I especially recommend going
over — and replicating — his excellent tutorial on the GitHub API.

Jonathan Regenstein has a nice post on RStudio’s R Views blog, “GDP Data via API”, which treads a similar path to
my FRED example. Except he uses the Bureau of Economic Analysis (BEA) API.

Greg Reda’s “Web Scraping 201: finding the API” covers much of the same ground as we have here. While he focuses
on Python tools, I've found it to be a handy reference over the years. (You can also take a look at the earlier posts
in Greg’s webscraping series — Part 1 and Part 2 — to see some Python equivalents of the rvest tools that we've
been using.)

Ian London (another Python user) has a nice blog post on “Discovering hidden APIs” from Airbnb.

Finally, while the methods covered in the last two lectures should have you covered for 95% (99%?) of your web-
scraping needs, there are some corner cases where they won't work. In particular, you may run into cases where
website content is rendered dynamically with JavaScript. In times like these, you'll need to spin up a so-called
“headless” browser to extract the content. More here and here.
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https://www.pscp.tv/w/1ynKOpVnERrGR
https://data.lacity.org/
https://twitter.com/tclavl
https://tclavelle.github.io/blog/
https://tclavelle.github.io/blog/r_and_apis/
https://rviews.rstudio.com/2018/09/12/gdp-via-api/
http://www.gregreda.com/2015/02/15/web-scraping-finding-the-api/
http://www.gregreda.com/2013/03/03/web-scraping-101-with-python/
http://www.gregreda.com/2013/04/29/more-web-scraping-with-python/
https://ianlondon.github.io/blog/web-scraping-discovering-hidden-apis/
https://rud.is/b/2017/02/09/diving-into-dynamic-website-content-with-splashr/
https://twitter.com/grant_mcdermott/status/1192889722672041984
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