
Data Science for Economists
Lecture 6: Webscraping: (1) Server-side and CSS

Grant R. McDermott

University of Oregon | EC 607

Contents
Software requirements . 1
Webscraping basics . 2
Webscraping with rvest (server-side) . 3
Application 1: Wikipedia . 3
Application 2: Craiglist . 8
Summary . 13
Further resources and exercises . 14

Software requirements
External software

Todaywe’ll be using SelectorGadget, which is a Chrome extension that makes it easy to discover CSS selectors. (Install the
extension directly here.) Please note that SelectorGadget is only available for Chrome. If you prefer using Firefox, then
you can try ScrapeMate.

R packages

• New: rvest, janitor
• Already used: tidyverse, lubridate, data.table, hrbrthemes

Recall that rvest was automatically installed with the rest of the tidyverse. However, these lecture notes assume that you
have rvest 1.0.0, which — at the time of writing — has to installed as the development version from GitHub. The code
chunk below should take care of installing (if necessary) and loading the packages that you need for today’s lecture.
Install development version of rvest if necessary
if (numeric_version(packageVersion("rvest")) < numeric_version('0.99.0')) {

remotes::install_github('tidyverse/rvest')
}
Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, rvest, lubridate, janitor, data.table, hrbrthemes)
My preferred ggplot2 plotting theme (optional)
theme_set(hrbrthemes::theme_ipsum())

Tip: If you can get an error about missing fonts whilst following along with this lecture, that’s probably
because you don’t have Arial Narrow — required by the hrbrthemes::theme_ipsum() ggplot2 theme that
I’m using here — installed on your system. You can resolve this by downloading the font and adding it to
your font book (Google it), or by switching to a different theme (e.g. theme_set(theme_minimal())).

1

https://github.com/uo-ec607/lectures
https://selectorgadget.com/
https://chrome.google.com/webstore/detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb
https://addons.mozilla.org/en-US/firefox/addon/scrapemate/
https://freefontsdownload.net/free-arial-narrow-font-30388.htm

Webscraping basics
The next two lectures are about getting data, or “content”, off the web and onto our computers. We’re all used to seeing
this content in our browers (Chrome, Firefox, etc.). So we know that it must exist somewhere. However, it’s important to
realise that there are actually two ways that web content gets rendered in a browser:

1. Server-side
2. Client side

You can read here for more details (including example scripts), but for our purposes the essential features are as follows:

1. Server-side

• The scripts that “build” the website are not run on our computer, but rather on a host server that sends down all of
the HTML code.

– E.g. Wikipedia tables are already populated with all of the information — numbers, dates, etc. — that we see
in our browser.

• In other words, the information that we see in our browser has already been processed by the host server.
• You can think of this information being embeded directly in the webpage’s HTML.
• Webscraping challenges: Finding the correct CSS (or Xpath) “selectors”. Iterating through dynamic webpages

(e.g. “Next page” and “Show More” tabs).
• Key concepts: CSS, Xpath, HTML

2. Client-side

• The website contains an empty template of HTML and CSS.
– E.g. It might contain a “skeleton” table without any values.

• However, when we actually visit the page URL, our browser sends a request to the host server.
• If everything is okay (e.g. our request is valid), then the server sends a response script, which our browser executes

and uses to populate the HTML template with the specific information that we want.
• Webscraping challenges: Finding the “API endpoints” can be tricky, since these are sometimes hidden from view.
• Key concepts: APIs, API endpoints

Over the next two lectures, we’ll go over the main differences between the two approaches and cover the implications for
any webscraping activity. I want to forewarn you that webscraping typically involves a fair bit of detective work. You will
often have to adjust your steps according to the type of data you want, and the steps that worked on one website may not
work on another. (Or even work on the same website a few months later). All this is to say that webscraping involves as
much art as it does science.

The good news is that both server-side and client-side websites allow for webscraping.1 If you can see it in your browser,
you can scrape it.

Caveat: Ethical and legal considerations

The previous sentence elides some important ethical considerations. Just because you can scrape it, doesn’t mean you
should. Now, I first have to tell you that this paragraph used to contain a warning about the legal restrictions pertaining
to webscraping activity. I’ve decided to drop those in the wake of the landmark hiQ Labs vs LinkedIn court ruling. (Short
version: It is currently legal to scrape data from the web using automated tools, as long as the data are publicly available.)
However, it’s still important to realise that the tools we’ll be using over these next two lectures are very powerful. A
computer can process commands much, much faster than we can ever type them up manually. It’s pretty easy to write up
a function or program that can overwhelm a host server or application through the sheer weight of requests.Or, just as
likely, the host server has built-in safeguards that will block you in case of a suspected malicious attack. We’ll return to
the “be nice” mantra at the end of this lecture, as well as in the next lecture.

1As we’ll see during the next lecture, scraping a website or application that is built on a client-side (i.e. API) framework is often easier; particularly
when it comes to downloading information en masse.

2

https://www.codeconquest.com/website/client-side-vs-server-side/
https://twitter.com/kjhealy/status/1255636154453549057
https://en.wikipedia.org/wiki/Denial-of-service_attack

Webscraping with rvest (server-side)
TheprimaryRpackage thatwe’ll be using today is rvest (link), a simplewebscraping library inspired byPython’sBeautiful
Soup (link), but with extra tidyverse functionality. rvest is designed to work with webpages that are built server-side and
thus requires knowledge of the relevant CSS selectors… Which means that now is probably a good time for us to cover
what these are.

Student presentation: CSS and SelectorGadget

Time for a student presentation on CSS (i.e Cascading Style Sheets) and SelectorGadget. Click on the links if you are
reading this after the fact. In short, CSS is a language for specifying the appearance of HTML documents (including web
pages). It does this by providing web browsers a set of display rules, which are formed by:

1. Properties. CSS properties are the “how” of the display rules. These are things like which font family, styles and
colours to use, page width, etc.

2. Selectors. CSS selectors are the “what” of the display rules. They identify which rules should be applied to which
elements. E.g. Text elements that are selected as “.h1” (i.e. top line headers) are usually larger and displayed more
prominently than text elements selected as “.h2” (i.e. sub-headers).

The key point is that if you can identify the CSS selector(s) of the content you want, then you can isolate it from the rest of
the webpage content that you don’t want. This where SelectorGadget comes in. We’ll work through an extended example
(with a twist!) below, but I highly recommend looking over this quick vignette before proceding.

Application 1: Wikipedia
Okay, let’s get to an application. Say that we want to scrape the Wikipedia page on the Men’s 100 metres world record
progression.

First, open up this page in your browser. Take a look at its structure: What type of objects does it contain? How many
tables does it have? Do these tables all share the same columns? What row- and columns-spans? Etc.

Once you’ve familiarised yourself with the structure, read thewhole page into R using the rvest::read_html() function.

library(rvest) ## Already loaded

m100 = read_html("http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression")
m100

{html_document}
<html class="client-nojs" lang="en" dir="ltr">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
[2] <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject ...

As you can see, this is an XML document2 that contains everything needed to render the Wikipedia page. It’s kind of like
viewing someone’s entire LaTeX document (preamble, syntax, etc.) when all we want are the data from some tables in
their paper.

Table 1: Pre-IAAF (1881–1912)

Let’s start by scraping the first table on the page, which documents the unofficial progression before the IAAF. The first
thing we need to do is identify the table’s unique CSS selector. Here’s a GIF of me using SelectorGadget to do that.

Sorry, this GIF is only available in the the HTML version of the notes.

As you can see, working through this iterative process yields “div+ .wikitable :nth-child(1)”. We can now use this unique
CSS selector to isolate the pre-IAAF table content from the rest of the HTML document. The core rvest function that
we’ll use to extract the table content is html_element(), before piping it on to html_table() to parse the HTML table
into an R data frame.

2XML stands for Extensible Markup Language and is one of the primary languages used for encoding and formatting web pages.

3

https://rvest.tidyverse.org/
https://www.crummy.com/software/BeautifulSoup/
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/How_CSS_works
http://selectorgadget.com/
https://cran.r-project.org/web/packages/rvest/vignettes/selectorgadget.html
http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression
http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression#Unofficial_progression_before_the_IAAF
http://selectorgadget.com/

pre_iaaf =
m100 %>%
html_element("div+ .wikitable :nth-child(1)") %>% ## select table element
html_table() ## convert to data frame

pre_iaaf

A tibble: 21 x 5
Time Athlete Nationality `Location of races` Date
<dbl> <chr> <chr> <chr> <chr>
1 10.8 Luther Cary United States Paris, France July 4, 1891
2 10.8 Cecil Lee United Kingdom Brussels, Belgium September 25, ~
3 10.8 Étienne De Ré Belgium Brussels, Belgium August 4, 1893
4 10.8 L. Atcherley United Kingdom Frankfurt/Main, Germ~ April 13, 1895
5 10.8 Harry Beaton United Kingdom Rotterdam, Netherlan~ August 28, 1895
6 10.8 Harald Anderson-A~ Sweden Helsingborg, Sweden August 9, 1896
7 10.8 Isaac Westergren Sweden Gävle, Sweden September 11, ~
8 10.8 Isaac Westergren Sweden Gävle, Sweden September 10, ~
9 10.8 Frank Jarvis United States Paris, France July 14, 1900
10 10.8 Walter Tewksbury United States Paris, France July 14, 1900
... with 11 more rows

Great, it worked!

I’ll tidy things up a bit so that the data frame is easier to work with in R. First, I’ll use the janitor::clean_names()
convenience function to remove spaces and capital letters from the column names. (Q: How else could we have done
this?) Second, I’ll use the lubridate::mdy() function to convert the date string to a format that R actually understands.

library(janitor) ## Already loaded
library(lubridate) ## Already loaded

pre_iaaf =
pre_iaaf %>%
clean_names() %>% ## fix the column names
mutate(date = mdy(date)) ## convert string to date format

pre_iaaf

A tibble: 21 x 5
time athlete nationality location_of_races date
<dbl> <chr> <chr> <chr> <date>
1 10.8 Luther Cary United States Paris, France 1891-07-04
2 10.8 Cecil Lee United Kingdom Brussels, Belgium 1892-09-25
3 10.8 Étienne De Ré Belgium Brussels, Belgium 1893-08-04
4 10.8 L. Atcherley United Kingdom Frankfurt/Main, Germany 1895-04-13
5 10.8 Harry Beaton United Kingdom Rotterdam, Netherlands 1895-08-28
6 10.8 Harald Anderson-Arbin Sweden Helsingborg, Sweden 1896-08-09
7 10.8 Isaac Westergren Sweden Gävle, Sweden 1898-09-11
8 10.8 Isaac Westergren Sweden Gävle, Sweden 1899-09-10
9 10.8 Frank Jarvis United States Paris, France 1900-07-14
10 10.8 Walter Tewksbury United States Paris, France 1900-07-14
... with 11 more rows

Now that we have our cleaned pre-IAAF data frame, we could easily plot it. I’m going to hold off doing that until we’ve
scraped the rest of the WR data. But first, an aside on browser inspection tools.

4

Aside: Get CSS selectors via browser inspection tools SelectorGadget is a great tool. But it isn’t available on all
browsers and can involve more work than I’d like sometimes, with all that iterative clicking.3 I therefore wanted to men-
tion an alternative (and very precise) approach to obtaining CSS selectors: Use the “inspect web element” feature of your
browser.

Here’s a quick example usingGoogleChrome. First, I open up the inspect console (Ctrl+Shift+I, or right-click and choose
“Inspect”). I then proceed to scroll over the source elements, until Chrome highlights the table of interest on the actual
page. Once the table (or other element of interest) is highlighted, I can grab its CSS by right-clicking and selecting Copy
-> Copy selector.

Sorry, this GIF is only available in the the HTML version of the notes.

In general, I prefer to obtain CSS selectors using this “inspect” method with my browser. But each to their own.

Challenge

Your turn: Download the next two tables from the sameWR100mpage. Combine these two new tables with the one above
into a single data frame and then plot the record progression. Answer below. (No peeking until you have tried first.)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 2: Pre-automatic timing (1912–1976) Let’s start with the second table.
iaaf_76 =

m100 %>%
html_element("#mw-content-text > div > table:nth-child(14)") %>%
html_table()

As we did with the previous table, let’s fix the column names and coerce the date string to a format that R understands.
iaaf_76 =

iaaf_76 %>%
clean_names() %>%

3Historically, at least, it also had a tendency to provide CSS selectors that weren’t exactly what we were looking for. To be fair, this may have
reflected some issues coming from the R + rvest as much as anything else. These minor incompatibilities have been largely eliminated with rvest
1.0.0… prompting a re-write of these notes!

5

https://www.lifewire.com/get-inspect-element-tool-for-browser-756549
https://twitter.com/grant_mcdermott/status/1354518507208105984

mutate(date = mdy(date))

iaaf_76

A tibble: 54 x 8
time wind auto athlete nationality location_of_race date ref
<dbl> <chr> <dbl> <chr> <chr> <chr> <date> <chr>
1 10.6 "" NA Donald Lip~ United Sta~ Stockholm, Sweden 1912-07-06 [2]
2 10.6 "" NA Jackson Sc~ United Sta~ Stockholm, Sweden 1920-09-16 [2]
3 10.4 "" NA Charley Pa~ United Sta~ Redlands, USA 1921-04-23 [2]
4 10.4 "0.0" NA Eddie Tolan United Sta~ Stockholm, Sweden 1929-08-08 [2]
5 10.4 "" NA Eddie Tolan United Sta~ Copenhagen, Denma~ 1929-08-25 [2]
6 10.3 "" NA Percy Will~ Canada Toronto, Canada 1930-08-09 [2]
7 10.3 "0.4" 10.4 Eddie Tolan United Sta~ Los Angeles, USA 1932-08-01 [2]
8 10.3 "" NA Ralph Metc~ United Sta~ Budapest, Hungary 1933-08-12 [2]
9 10.3 "" NA Eulace Pea~ United Sta~ Oslo, Norway 1934-08-06 [2]
10 10.3 "" NA Chris Berg~ Netherlands Amsterdam, Nether~ 1934-08-26 [2]
... with 44 more rows

Table 3: Modern Era (1977 onwards) For the final table, I’ll just run the code all at once. By now you should recognise
all of the commands.
iaaf =

m100 %>%
html_element("#mw-content-text > div > table:nth-child(19)") %>%
html_table() %>%
clean_names() %>%
mutate(date = mdy(date))

iaaf

A tibble: 24 x 8
time wind auto athlete nationality location_of_race date
<dbl> <chr> <dbl> <chr> <chr> <chr> <date>
1 10.1 1.3 NA Bob Ha~ United Sta~ Tokyo, Japan 1964-10-15
2 10.0 0.8 NA Jim Hi~ United Sta~ Sacramento, USA 1968-06-20
3 10.0 2.0 NA Charle~ United Sta~ Mexico City, Me~ 1968-10-13
4 9.95 0.3 NA Jim Hi~ United Sta~ Mexico City, Me~ 1968-10-14
5 9.93 1.4 NA Calvin~ United Sta~ Colorado Spring~ 1983-07-03
6 9.83 1.0 NA Ben Jo~ Canada Rome, Italy 1987-08-30
7 9.93 1.0 NA Carl L~ United Sta~ Rome, Italy 1987-08-30
8 9.93 1.1 NA Carl L~ United Sta~ Zürich, Switzer~ 1988-08-17
9 9.79 1.1 NA Ben Jo~ Canada Seoul, South Ko~ 1988-09-24
10 9.92 1.1 NA Carl L~ United Sta~ Seoul, South Ko~ 1988-09-24
... with 14 more rows, and 1 more variable: notes_note_2 <chr>

Combined eras plot

Let’s combine our three separate tables into a single data frame. I’ll use base R’s rbind() to bind by row and include only
the variables that are common to all of the three data frames. For good measure, I’ll also add an extra column describing
which era each record was recorded under.
wr100 =

rbind(
pre_iaaf %>% select(time, athlete, nationality, date) %>% mutate(era = "Pre-IAAF"),

6

iaaf_76 %>% select(time, athlete, nationality, date) %>% mutate(era = "Pre-automatic"),
iaaf %>% select(time, athlete, nationality, date) %>% mutate(era = "Modern")
)

wr100

A tibble: 99 x 5
time athlete nationality date era
<dbl> <chr> <chr> <date> <chr>
1 10.8 Luther Cary United States 1891-07-04 Pre-IAAF
2 10.8 Cecil Lee United Kingdom 1892-09-25 Pre-IAAF
3 10.8 Étienne De Ré Belgium 1893-08-04 Pre-IAAF
4 10.8 L. Atcherley United Kingdom 1895-04-13 Pre-IAAF
5 10.8 Harry Beaton United Kingdom 1895-08-28 Pre-IAAF
6 10.8 Harald Anderson-Arbin Sweden 1896-08-09 Pre-IAAF
7 10.8 Isaac Westergren Sweden 1898-09-11 Pre-IAAF
8 10.8 Isaac Westergren Sweden 1899-09-10 Pre-IAAF
9 10.8 Frank Jarvis United States 1900-07-14 Pre-IAAF
10 10.8 Walter Tewksbury United States 1900-07-14 Pre-IAAF
... with 89 more rows

All that hard works deserves a nice plot, don’t you think?
wr100 %>%

ggplot(aes(x=date, y=time, col=fct_reorder2(era, date, time))) +
geom_point(alpha = 0.7) +
labs(
title = "Men's 100m world record progression",
x = "Date", y = "Time",
caption = "Source: Wikipedia"
) +

theme(legend.title = element_blank()) ## Switch off legend title

10.0

10.5

1900 1950 2000
Date

Ti
m

e

Pre-IAAF

Pre-automatic

Modern

Men's 100m world record progression

Source: Wikipedia

7

Application 2: Craiglist
There are several features of the previous Wikipedia example that make it a good introductory application. Most notably,
the HTML table format provides a regular structure that is easily coercible into a data frame (via html_table()). Often-
times, however, the information that we want to scrape off the web doesn’t have this nice regular structure. For this next
example, then, I’m going to walk you through a slightly more messy application: Scraping items from Craiglist.

The specific items that I’m going to scrape here are audio speakers for sale in my local city of Eugene. But you can adjust
the relevant URL search parameters to your own preferences — cars in Chicago, concert tickets in Cleveland, etc. — and
the same principles should carry through.

Extract the text

We start as we always do by reading in the HTML.
base_url = "https://eugene.craigslist.org/search/sss?query=speakers&sort=rel&srchType=T"

craiglist = read_html(base_url)

Next, we need to identify the CSS selectors in order to extract the relevant information from this page. Once again,
this involves quite a lot of iterative clicking with SelectorGadget. I’ll spare you (and myself) another GIF. But here is a
screenshot of the final result once I’ve isolated the elements of interest. As you can see, the relevant selector is “.result-hood
, .result-date , .result-price , .hdrlnk”.

Nowcomes thefirst tweak relative to our previous example. Insteadof usinghtml_element(), we’ll usehtml_elements()
(i.e. plural) to extract all of the matching elements.4 I’ll assign the resulting object as speakers, although I won’t try to
coerce it to an R array just yet.
speakers =

craiglist %>%
html_elements(".result-hood , .result-date , .result-price , .hdrlnk")

4Using the singular version would simply return the very first element, which isn’t very useful. Truth be told, the plural version html_elements()
is probably a good default since it will still work with singular objects. So now you know.

8

https://craigslist.org
https://eugene.craigslist.org/search/sss?query=speakers&sort=rel&srchType=T

At this point, youmay be tempted to pipe the speakers object to html_table() to create a data frame likewe didwith our
Wikipedia example. Unfortunately, that won’t work here because we are dealing with free-form text rather than regular
table structure.

html_table(speakers)

Error in matrix(unlist(values), ncol = width, byrow = TRUE): 'data' must be of a vector type, was 'NULL'

Instead, we’ll parse it as simple text via html_text(). This will yield a vector of strings, which I’ll re-assign the same
speakers object.

speakers = html_text(speakers) ## parse as text
head(speakers, 20) ## show the first 20 entries

[1] "$100"
[2] "Feb 10"
[3] "Kenwood Surround Receiver With Speakers"
[4] "$100"
[5] " (Springfield)"
[6] "$80"
[7] "Feb 10"
[8] "Yamaha Subwoofer With Speakers"
[9] "$80"
[10] " (Eugene)"
[11] "$100"
[12] "Feb 10"
[13] "Sony Home Theatre Surround Sound System: Receiver, 5 Speakers & Subwoofer - Silv"
[14] "$100"
[15] " (Eugene)"
[16] "$60"
[17] "Feb 9"
[18] "Sony surround sound speakers and subwoofer SA-WMS230"
[19] "$60"
[20] " (Springfield)"

Coercing to a data frame

Wenowhave a bit ofworkonourhands to convert this vector of strings into a usable data frame. (Remember: Webscraping
is as much art as it is science.) The general approach that we want to adopt is to look for some kind of “quasi-regular”
structure that we can exploit.

For example, we can see from my screenshot above that each sale item tends to have five separate text fields. (Counter-
clockwise from the top: price, listing date, description, price (again), and location.) Based on this, we might try to transform
the vector into a (transposed) matrix with five columns and from there into a data frame.

head(as.data.frame(t(matrix(speakers, nrow=5))))

Warning in matrix(speakers, nrow = 5): data length [527] is not a sub-multiple
or multiple of the number of rows [5]

V1 V2
1 $100 Feb 10
2 $80 Feb 10
3 $100 Feb 10
4 $60 Feb 9
5 $35 Feb 9
6 $0 Feb 9
V3

9

1 Kenwood Surround Receiver With Speakers
2 Yamaha Subwoofer With Speakers
3 Sony Home Theatre Surround Sound System: Receiver, 5 Speakers & Subwoofer - Silv
4 Sony surround sound speakers and subwoofer SA-WMS230
5 PIONEER S-P410V SURROUND SPEAKERS
6 Bookshelf Speakers for sale
V4 V5
1 $100 (Springfield)
2 $80 (Eugene)
3 $100 (Eugene)
4 $60 (Springfield)
5 $35 (Springfield)
6 $0 (Eugene)

Uh-oh. This approach isn’t going to work because not every sale item lists all five text fields. Quite a few are missing the
location field, for instance.

Let’s try a different tack. The key point about the “quasi-regular” structure that we’re trying to exploit is that it needs to be
present for every sale item. Looking again at the webpage/screenshot, can you think of something that meets that criteria?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How about the listing date text field? This is automatically populated by Craiglist and doesn’t rely on the vagaries of
individual seller text. In the code chunk that follows, I’m going to exploit the fact that each item includes a listing date
and use that as an anchor for creating individual row entries. Now, I have to admit that I’m going to use some tools that
we haven’t covered yet — iteration and functions. We’ll get to these important topics later on in the course, so I don’t
want you to stress about understanding the details of my code. The more important thing is the intuition, where I’m (a)
identifying the listing date entries in the speakers vector, and (b) using these date entries as anchors to indicate breaks
points between separate sale items. For good measure, I’m going to do this with data.table rather than the tidyverse. But
that’s mostly a matter of personal taste; it would be easy to translate my code to the latter if that’s what you’d prefer.

library(data.table) ## Already loaded

dates = as.Date(speakers, format = '%b %d') ## Try to coerce to date of form "Jan 01"
idates = which(!is.na(dates)) ## Get index of all the valid dates (i.e. non-NA)

10

Iterate over our date index vector and then combine into a data.table. We'll
use the listing date to define the start of each new entry. Note, however,
that it usually comes second among the five possible text fields. (There is
normally a duplicate price field first.) So we have to adjust the way we
define the end of that entry; basically it's the next index position in the
sequence minus two.
speakers_dt =

rbindlist(lapply(
seq_along(idates),
function(i) {
start = idates[i]
end = ifelse(i!=length(idates), idates[i+1]-2, tail(idates, 1))
data.table(t(speakers[start:end]))

}
), fill = TRUE) ## Use fill=TRUE arg so that rbindlist allocates 5 cols to each row

speakers_dt

V1
1: Feb 10
2: Feb 10
3: Feb 10
4: Feb 9
5: Feb 9

116: Feb 10
117: Feb 10
118: Feb 10
119: Feb 10
120: Feb 10
V2
1: Kenwood Surround Receiver With Speakers
2: Yamaha Subwoofer With Speakers
3: Sony Home Theatre Surround Sound System: Receiver, 5 Speakers & Subwoofer - Silv
4: Sony surround sound speakers and subwoofer SA-WMS230
5: PIONEER S-P410V SURROUND SPEAKERS

116: Polk Audio Vintage SDA 2B Stereo Dimensional Array Speakers Set
117: Vintage Empire Marble Top Speakers/End Tables
118: Bose Speakers
119: Pair of PA Speakers 10 inch Good Condition
120: <NA>
V3 V4
1: $100 (Springfield)
2: $80 (Eugene)
3: $100 (Eugene)
4: $60 (Springfield)
5: $35 (Springfield)

116: $475 <NA>
117: $500 <NA>
118: $500 <NA>
119: $160 <NA>

11

120: <NA> <NA>

Looks like it worked. Sweet.

This last bit of code is optional — and, again, I’m not going to explain myself much — but is just to tidy up the data table
somewhat.

names(speakers_dt) = c('date', 'description', 'price', 'location')

speakers_dt[, ':=' (date = as.Date(date, format = '%b %d'),
price = as.numeric(gsub('\\$|\\,', '', price)))]

Because we only get the month and day, some entries from late last year may
have inadvertently been coerced to a future date. Fix those cases.
speakers_dt[date>Sys.Date(), date := date - years(1)]

Drop missing entries
speakers_dt = speakers_dt[!is.na(price)]

speakers_dt

date
1: 2021-02-10
2: 2021-02-10
3: 2021-02-10
4: 2021-02-09
5: 2021-02-09

115: 2021-02-10
116: 2021-02-10
117: 2021-02-10
118: 2021-02-10
119: 2021-02-10
description
1: Kenwood Surround Receiver With Speakers
2: Yamaha Subwoofer With Speakers
3: Sony Home Theatre Surround Sound System: Receiver, 5 Speakers & Subwoofer - Silv
4: Sony surround sound speakers and subwoofer SA-WMS230
5: PIONEER S-P410V SURROUND SPEAKERS

115: (New) 2 Pairs Klipsch Reference RCR-3 6.5" 2 Way In-Ceiling Speakers
116: Polk Audio Vintage SDA 2B Stereo Dimensional Array Speakers Set
117: Vintage Empire Marble Top Speakers/End Tables
118: Bose Speakers
119: Pair of PA Speakers 10 inch Good Condition
price location
1: 100 (Springfield)
2: 80 (Eugene)
3: 100 (Eugene)
4: 60 (Springfield)
5: 35 (Springfield)

115: 400 <NA>
116: 475 <NA>
117: 500 <NA>
118: 500 <NA>

12

119: 160 <NA>

Plot

As ever, let’s reward our efforts with a nice plot. I’ll add a few bells and whistles to this one, but this is most certainly
optional.

ggplot(speakers_dt, aes(date, price)) +
geom_point(aes(fill = price), show.legend = FALSE,

shape = 21, colour = 'black', size = 2, stroke = 0.1) +
scale_y_comma() +
scale_fill_viridis_c(option = 'magma', begin = 0.3, end = 0.9) +
labs(title = 'Speakers for sale near Eugene, OR',

caption = 'Source: Craigslist',
x = 'Listing date', y = 'Price (USD)') +

theme_modern_rc()

0

1,000

2,000

3,000

Jan 01 Jan 15 Feb 01
Listing date

Pr
ic

e
(U

SD
)

Speakers for sale near Eugene, OR

Source: Craigslist

Summary
• Web content can be rendered either 1) server-side or 2) client-side.
• To scrape web content that is rendered server-side, we need to know the relevant CSS selectors.
• We can find these CSS selectors using SelectorGadget or, more precisely, by inspecting the element in our browser.
• We use the rvest package to read into the HTML document into R and then parse the relevant nodes.

– A typical workflow is: read_html(URL) %>% html_elements(CSS_SELECTORS) %>% html_table().
– You might need other functions depending on the content type (e.g. html_text).

• Just because you can scrape something doesn’t mean you should (i.e. ethical and possibly legal considerations).
• Webscraping involves as much art as it does science. Be prepared to do a lot of experimenting and data cleaning.

13

• Next lecture: Webscraping: (2) Client-side and APIs.

Further resources and exercises
In the next lecture, we’re going to focus on client-side web content and interacting with APIs. For the moment, you
can practice your rvest-based scraping skills by following along with any of the many (many) tutorials available online.
Lastly, we spoke a bit about the “be nice” scraping motto at the beginning of the lecture. I also wanted to point you to
the polite package (link). It provides some helpful tools to maintain web etiquette, such as checking for permission and
not hammering the host website with requests. As a bonus, it plays very nicely with the rvest workflow that we covered
today, so please take a look.

14

https://github.com/dmi3kno/polite

	Software requirements
	Webscraping basics
	Webscraping with rvest (server-side)
	Application 1: Wikipedia
	Application 2: Craiglist
	Summary
	Further resources and exercises

